微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > DSP和FPGA在汽车电子中的应用

DSP和FPGA在汽车电子中的应用

时间:07-22 来源:互联网 点击:

脱硬件结构的束缚;第二,并不是不要硬件;第三,汽车电子产品应该具有开放性和兼容性,开放是指对使用的开放、对生产的开放和对研制的开放。下面,就基于软件无线电的思想探讨DSP和FPGA在汽车电子中的主要应用。

  随着应用日益多样化,DSP和FPGA演变成不再是一块独立的芯片,而变成了构件内核。这使得设计师能选择合适的内核和专用逻辑“胶结”在一起形成专用DSP和FPGA方案,以满足信号处理的需要。目前,还出现把DSP核和ASIC微控制器集成在一起的芯片。汽车电子系统使用通用DSP和FPGA来实现语音合成,纠错编码。而语音合成、语音压缩与编码是DSP最早和最广泛的应用,矢量编码器用于将语音信号压缩到有限带宽的信道中。

  3.1基于DSP和FPGA的车用语音信号处理

  汽车电子产品中的语音处理主要涉及到语音的数字化处理、语音编解码、语音压缩和语音识别。国外比较热门的汽车电子产品之一就是语音识别系统,语音识别系统具有潜在的应用前景,包括声控电话、语音操作导航、声控选择广播频道、防盗语音鉴别等。例如,一种基于隐式马可夫模型(HMM)的与讲话人无关、100条指令识别的应用,由文献可知,那幺声学HMM模型的大小将为。进行包括输入语音采样的细分/开窗、MFCC提取、概率计算和Viterbi搜寻等适时处理,对DSP的运算量要求一般为10000万次乘加(MAC)运算。对于连续语音信号的识别,则要求更好的数字信号处理速度和更大的存储空间。

随着应用日益多样化, DSP和FPGA演变成不再是一块独立的芯片,而变成了构件内核。这使得设计师能选择合适的内核和专用逻辑“胶结”在一起形成专用DSP和FPGA方案,以满足信号处理的需要。目前,还出现把DSP核和ASIC微控制器集成在一起的芯片。汽车电子系统使用通用DSP和FPGA来实现语音合成,纠错编码。而语音合成、语音压缩与编码是DSP最早和最广泛的应用,矢量编码器用于将语音信号压缩到有限带宽的信道中。

  3.2 基于DSP和FPGA的车用图像信号处理

  数字图像处理与分析技术已是一门较为成熟的二维信号处理技术, 现已被广泛应用于通信、生物医学、工业检测和军事等各个方面,当然在汽车电子中也将涉及到大量的图像处理处理。汽车电子中的图像处理主要包括运动图像处理和静止图像处理。目前,很多行业的汽车都已经开通了全球定位系统(GPS)。车载GPS系统除了传送自己的位置坐标信息,还需传送自己所处环境的图像信息,例如救护伤员的现场图景、紧急救灾现场图像等。同时,各个交通路口的流量监控图像要传回交通指挥中心,也需要进行图像信号的处理。对于这种汽车运动图像,主要特点是:第一,多速率压缩。由于无线信道的时变特性,系统有效带宽、传输方式和数据速率往往会不断的变化;相应地,需要采用多速率压缩方式,灵活地适应信道带宽的这种变化。第二,压缩比例大。比如NTSC电视图像的数据量约为167Mb/s,要将其压缩200至6000倍左右,才能适应传输带宽的要求。第三,运动图像的运动补偿。运动图像由于它本身的相对运动,会有多普勒频移问题。对于高速运动的汽车来说,这种频移往往是不能忽视,必须对所获图像进行运动补偿。

  3.3 基于DSP和FPGA的车用自适应实时处理

FPGA的时钟延迟可以达到纳秒级,结合DSP和FPGA的并行处理方式,因此DSP和FPGA非常适合超高速和实时信号处理领域。如前所述,由于FPGA内部结构的特点,它可以很容易的实现分布式的算法结构,这一点对实现汽车电子中的高速数字信号处理十分有利。因为汽车电子产品中通常都需要大量的滤波运算,而这些滤波函数往往需要大量的乘和累加操作,而通过分布式的算术结构,FPGA可以有效地实现乘和累加操作。另一方面,需要的大量的复杂的数学运算,可以依靠DSP或由DSP核组成的ASIC来完成的。在汽车电子产品中,对产品的大小、重量、功耗特别关注;在数据传输方面,在汽车电子系统中由声音信号数字化所产生的大量数据,要依靠高性能的DSP和FPGA来减少存储空间和传输带宽的要求,需要对视频信号与音频信号的编码、解码、彩色空间转换、回音消除、滤波、误码校正、复用、比特流协议处理等任务进行自适应实时处理,这是往往非DSP和FPGA不能完成的。

  控制理论处理是汽车电子中的难点和重点问题,利用经典和现代控制理论而建立的开环、死循环、最优、自适应控制系统来实现汽车的最优化控制。建立这些控制系统首先对汽车某个系统,如点火提前角优化控制系统进行识别,建立该系统的数学模型,然后采用相应的控制方法进行优化控制。但是发动机本身结构比较复杂,影响点火的因素较多,理论推导优化点火状态下的数学模型比较困难。因此,一般采用实验的方法找出各种工况下的最佳点火提前角,然后存入基于DSP和FPGA或DSP和FPGA阵列加大容量外部存储器中;这样可以避免使用计算机。在控制过程中,系统实时地检测发动机的工况(如发动机转速、功率等),用查表的方法,查出该工况下的最佳点火提前角,进行修正后再去控制点火。这比传统的基于计算机的控制方法,一方面,大大地减少了体积;另一方面,更具有实时性、灵活性。悬架电子控制,是指计算机检测到转向和制动状况的信号后,能自适应地处理车辆的侧倾、前后仰,并自动调整减震器阻尼力的控制系统, 它能防止倾斜并提高车轮的地面附着力, 超声波高度传感器用来控制车身高度,空气弹簧用来调整弹性系统,光栅检测器用来测定转向角等等。而DSP和FPGA的出现和发展应用,已使各系统控制走向集中,形成整车的智能控制系统。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top