基于RlTOS和ISP功能数字仪表系统设计实现
k(LCMI)isplay);
0s_delete_task(Intial);
}
其中相关的宏定义变量值为:
#define Intial O
#define ADC0809Data 1
#define DSl 8820Temperate 2
#define LCMDisplay 3
在Keil集成开发环境下调试本程序时,除了要包括相应的头文件(rtx51tny.h)外,还必须设置好相应的环境参数值。
3.1数模转换子程序
数据采集与A/I)转换子程序主要对配电箱传来的模拟信号进行采样、量化及返回值处理。软件编程时的电气时序及相关技术要求如图4所示。
在时序图中,上升沿清空量化结果寄存器内的值,下降沿启动,A/D转换;采样启动脉冲的高电平状态至少应维持100μs;EOC变为低电平表示转换过程正在进行,且启动信号的硬件迟滞效应时间至少应为10μs;MSB对应AT89S52并口的:P0.7,LSB对应P0.0。
关键部分的程序源代码及注释如下:
unsigned int AI)C0809(void)
{
unsigned int wait=3;
ChannelChooseA=1;
ChannelChooseB=0;
ChannelChooseC=0;
ADStartPulse=0;
ADStartPulse=1;//产生A/D转换的启动脉冲
(上升沿部分)
delay();//保证启动脉冲的高电平宽度
至少大于100μs
ADStartPulse=0;//产生A/D转换的启动脉冲
(下降沿部分)
wait--;
wait--; //指令延时以保证达到:EOC
变为低电平所需的硬件迟滞要求。
‘whilefADConvertEOC==0):
return(Result);/将A/[)转换后的量化值返
回到主函数中。
}
3.2液晶显示模块
MSl2232B 型图形点阵液晶显示(LCM)模块左右分为Master和Slave控制器,上下共分4页,左边列地址为0-61,右边列地址为0-61,对该器件的操作关键是按时序图正确配置好主、辅控制器的工作状态。利用AT89S52访问LCM时有二种常用的方法,即存储器映射寄存器寻址和模拟接口时序,本系统采用后一种方法。主要函数模块源代码分析:
void MasterWriteD(unsigned char Ramdata)
//向Master控制器写数据
{
ReadOrWrite=0;
InstructionOrData=1;
MasterEl=1;
P0=Ramdata;
MasterEl:0;
}
void MasterWriteI(unsigned char Ramdata)
//向Master控制器写指令
{
ReadOrWrite=0;
InstructionOrData=0;
MasterEl=1;
P0=Ramdata;
MasterE1=O;
}
void ReadState(void) //检测主、辅控制器工作状态
{
ReadOrWrite=1;
InstructionOrData=0;
MasterEl=1:
SlaveE2=1;
PO=0xff;
while(BusStateBusy==1);
}
void SetPage(unsigned char page0,unsigned char pagel)
{
MasterWriteI(0xb8 | pagel);
SlaveWriteI(0xb8 | page0);
}
void SetColumn(unsigned char address0,unsigned char addressl)
{
MasterWriteI(0x3f addressl);
SlaveWfiteI(0x3f address0);
}
//在主控制器操作的左边LCM屏上显示一列信息(由8个像素点构成)
void MasterPutChar(unsigned char masterchar)
{
ReadState();
MasterWriteD(masterchar);
}
一般说来。AT89S52的RAM存储空间是有限的,而图形或字符的点阵代码(可以下载相关的应用插件,由.bmp文件或字符自动生成)如果太大,放置到RAM区会出现内存不足的告警提示,为此可按如下方式处理:
unsigned char code Dotn[]=lOxOO,Ox00,0x30,
0x00,0x30,Ox00,Ox00,0x00};
即将点阵代码通过code关键字限定后放于ROM区域内。
}
return(midtemp);
}
void delay(unsigned char out)
{
unsigned char in;
for(in=out;in>O;in--);
}
4 ISP的结构原理
将ISP功能集成到成型的PCB上就可以实现程序的实时更新与升级操作,其结构原理如图5所示,这对于复杂工程系统设计显然是很方便的,也是切实可行的。
5
5 结论
随着智能仪器仪表技术的发展,显示模块的液晶化已成为一种较为流行的趋势。本文给出的软硬件设计方案已在某武器系统的调试过程中得到正确、可靠、稳定的运行。它不仅克NT模似仪表体积大、故障率高的缺陷,而且由于运用了RTOS技术,使数据检测的敏捷度得到大幅提升。另外,ISP功能的在线集成也为系统功能的扩充预留了空间。
3.3 DSl8820的1-Wire子程序
DSl8820的突出优点是将现场采集的环境温度直接以数字形式输出,这样可以省去后续的信号放大及模/数转换部分,构建外围电路的元件少且相对简单,系统成本低廉;1-Wire接口与AT89S52通信,其结构便于多点测量且易于扩展;测温范围宽(-550℃~1250℃)且精度高。
对l-Wire的操作关键是软件时序的处理,对于不同的晶体振荡器其延时参数是不同的,本系统以12MHz为例给出如下主要程序代码:
bit DallassReset(void)
{
unsigned char presence=0;
DallassDataout=1; //发出复位脉冲前先释
放总线
delay(10);
DallassDataout=0;
delay(240);//保证延时在4801μs~9
- 嵌入式Linux发展 谈Montavista Linux(04-15)
- 利用MLD自动化操作系统移植降低 Linux成本(05-04)
- 嵌入式实时系统中的优先级反转问题(06-10)
- 分时操作系统思想在单片机中的具体应用 (10-30)
- 采用Linux与DSP/BIOS RTOS实施双OS信号处理技术(02-13)
- VxWorks下的多重定时器设计(02-16)
