一种基于MCU内部Flash的在线仿真器设计方法
指空间需要在内外存储器之间反复切换。CPU地址空间划分示意图如图3所示。总体上,仿真器的工作受图4所示的状态机控制。该状态机共有四个状态: ·用户程序运行态(简称用户态) 仿真器复位后,处在运行用户程序的状态。在该状态下,CPU运行存储在内部Flash中的用户程序;外部仿真逻辑实时监测仿真接口,等待程序中断事件的发生,进入下一状态-跳转态。 用户程序通过MCU的ISP(在线编程接口)编程到内部Flash中,由Flash MCU的专用编程器完成。在设计bond-out MCU时,应该考虑与非bond-out MCU在编程时管脚的一致性。 外部SRAM用来存储监控程序和监时数据。 ·跳转态 一旦程序中断事件发生,需要切换CPU的取指空间,跳转到监控程序窗口。 由于在程序中何处中断是不可预知的,因此不可能在用户程序中预先安插好用于空间切换的跳转指令。所以需要一个专门的状态来插入跳转指令码和跳转的目的地址,即监控程序的入口地址,强制CPU运行监控程序。监控程序窗口是划分CPU地址空间时,为仿真功能预留的地址空间,空间大小视所需的监控程序的大小而定,监控程序的大小在一定程序上取决于仿真功能的强弱。 CPU从仿真接口读跳转指令码和跳转地址。MCU外部仿真逻辑同时使能程序空间切换信号,屏蔽MCU的所外部中断,停止MCU中CPU外围模块的时钟,也就相当于屏蔽了MCU的所有内部中断。当程序空间的切换完成后,仿真器进入监控态,运行存储在外部SRAM中的监程序。 ·监控态 在监控状态下,CPU运行存储在外部SRAM中的监控程序;继续禁止MCU的所有外部中断,停止MCU中CPU外围硬件模块的时钟。 监控程序的任务是获取MCU当前的状态,接受软件的调试命令,控制MCU的下一步运行。监控程序可以写得很简单,仅仅获取CPU特殊寄存器和外围硬件寄存器的值,实现监视功能。也可以有比较完备的功能,例如接收用户的调试指令,修改其中一些寄存器的值,命使得MCU再次运行时,按照用户的调试要求往下运行。这需要在MCU设计时,保证在CPU外围模块的时钟停止时,也可以读写外部硬件寄存器。至于CPU 的5个特殊寄存器;PC、ACC、IDX、CCR和 SP,可以通过进入监控程序执行特定的程序段得到。如MOTOROLA的HC6808就可以通过在监控程序开始处加入以下程序段得到这些寄存器的值。对于 CPU指令集不支持读取全部特殊寄存器的MCU,可以通过在MCU内部增加测试逻辑得到。PC值即为程序中断处CPU的取指地址。 PSHA ;将ACC的值压入堆栈 TPA ;将CCR的值传送给ACC STA $2FEB ;将CCR的值存入存储器,地址为$2FEB PULA ;将ACC弹出堆栈 STA $2FEA ;将ACC有值存入存储器,地址为$2FEA STHX $5F ;将IDX(H:X)的值存入存储器,地址为$005F TSX ;将SP的值传送给IDX(H:X) STHX $5D ;将SP的值存放存储器,地址为$005D 当不再继续调试,给出开始运行的命令,监控程序结束对运行命令的等待,并且将CPU特殊寄存器的值恢复。继续运行监控程序,直到最后一条指令即跳转指令进行返回态。 ·返回态 CPU 执行监控程序的最后一条指令-跳转指令。外部仿真逻辑在指令码后紧接着插入本次中断事件的中断点地址(进入监控程序之前的用户程序指令地址),CPU的取指空间需要跳回到用户程序空间。取消对外部中断的屏蔽,恢复CPU外围模块的工作时钟,监控程序完成使命,回到用户态,继续运行内部Flash中的用户程序。 3.2 内部仿真逻辑 为了构造合适的MCU的仿真接口,必须在MCU设计时,在MCU内部增加一个仿真接口模块,称为内部仿真接口模块。负责对仿真接口所需的CPU端口信号进行处理(如出于减少bond-out信号线的考虑,将地址和数据总线复用),并产生外部仿真逻辑所需的控制信号如地址锁存信号,接收来自外部仿真逻辑的控制信号如程序文凭间切换使能信号等。 3.3 外部仿真逻辑 外部仿真逻辑如图2左部所示,负责接收计算机通过并口发送的仿真命令,监视MCU的仿真接口,控制仿真器的工作状态。外部仿真逻辑由外部仿真接口模块、断点判断模块、轨迹纪录模块、并口接口模块和外部SRAM读写控制模块等部分组成。各个模块的作用简单介绍如下: ·外部仿真接口模块 该模块是外部仿真逻辑中仿真状态机所在的核心模块。功能包括:接收业自MCU的地址、数据、读/写、取指、地址锁存等信号;根据并口接口模块给出的来自软件的仿真命令,给出仿真控制信号;在程序空间切换时插入跳转指令和地址;将来自MCU的地址和取指信号送给断点判断模块,并接收来自断点判断模块的断点标志信号;产生送给MCU的程序空间切换使能信号;运行监控程序时,给出读写外部SRAM所需信号,并接收读出的数据
微控制器 在线仿真 开发系统 Flash SRAM 相关文章:
- μC/OS-II下通用驱动框架的设计与实现(07-23)
- 微控制器省电管理方法(05-04)
- 基于DSP和Cygnal单片机的移动数据处理传输系统 (07-06)
- 从硅片工艺技术到嵌入式软件的全方位低功耗系统设计(01-01)
- 基于IAP的STM32程序更新技术(01-23)
- 发挥ARM Cortex-M3和M4微控制器最大作用的要诀(01-21)