硬盘驱动器接口技术与嵌入式应用技术介绍
切断电流关闭硬盘来节省功耗。理论上,它还可以被用来在上电的同时,启动硬盘驱动器和初始化寄存器。在该流程完成后,它将发送一个中断信号到CPU,以减少处理器在处理断电和上电任务的负载。由于不需要CPU参与这个过程,从而在更高程度上实现了无缝连接。
使用QuickLogic超低功耗IDE控制器设备作为低功耗嵌入式处理器的配套芯片,大大提高了整体的系统吞吐量、降低了硬盘驱动器相关任务的CPU占用率、通过降低硬盘驱动器的工作时间来降低系统功耗。相对基于SRAM和Flash技术,QuickLogic低功耗Vialink互联技术大大降低了功耗。采用SRAM和Flash技术方案的设计将消耗几百mA的电流。对简单CPLD方案而言,只需要增加少量成本,采用低功耗IDE桥控制器就可以实现提升高能效系统性能,最终改善终端用户的使用效果。
图3 采用专用的QuickLogic IDE与SDRAM控制:通过对主存储器的直接存取,采用外部硬件中专用的QuickLogic IDE与SDRAM控制器来加速硬盘驱动器的读写速率。
缺点
本硬件方案既简单又直接,但设计师需要考虑与主微处理器架构和等待时间相关的数据吞吐量的潜在瓶颈。因此必须认真考虑平台的系统性能。例如,在便携式媒体处理器中,有可能存在图像处理器共享同一个总线。因此,如果希望得到更高的性能,可以考虑采用Quick Logic IDE与SDRAM控制器设计方案。
QuickLogic IDE与SDRAM控制器
优点
如果主处理器的本地总线或SDRAM控制器,允许外部设备来控制总线并直接向主存储器写入数据,那么桥接器可以向主存储器直接存取512字节扇区的数据。这样将大大节省主处理器的周期,消除主处理器对局部总线进行传输请求的响应等待时间,并且可以减少微处理器进行磁盘相关数据传输操作的执行时间。这使得主处理器可以同时运行其他系统进程或降低操作速度来节省功耗。主处理器并不积极地参与跟硬盘驱动器之间的数据传输。预先在主存储器中写入数据,可以防止在执行中出现遗漏。主存储器更快且更有效的数据传输,可降低硬盘驱动器的活动时间以及硬盘驱动器的整体功耗。根据具体应用的不同,功耗降低的程度也不相同。一个完整的单芯片配套解决方案是由硬件来控制数据的传输,从而大大增强系统的性能。由于基本数据的传输都在硬件中进行处理,不必再担心中断反应时间和中断堆栈。UDMA的ATA-66也应能够在这方案中被实现,而且更能有效地提高系统性能。
缺点
一般情况下,只有一个外部主设备可以对SDRAM进行直接访问。大部分具有外部图形协处理器或者其他相关硬件加速器的CPU,都具有专供该外部设备使用的SDRAM控制,使得IDE失去了用武之地。虽然可编程QuickLogicIDE桥接处理器中使用的某些仲裁逻辑可以允许超过一个总线主控,但是一般情况下,系统要求专用硬件加速器必须具有优先级别和总线读写。本方案有利于提升系统性能和驱动程序开发,但是随着系统内存总线速率的提升和向DDR SDRAM技术的转移,允许外部内存总线主控的CPU已经不再是主流产品。而且,由于SDRAM控制器和用于控制的外部总线接口,这种方案还需要配备更多的逻辑电路,这就不可避免地增加了该设计的成本。
性能测试
用于低功耗应用领域的嵌入式处理器缺乏硬盘控制器,这使得系统设计师不得不自己解决连接性难题。 支持下一代迷你硬盘的标准如CE-ATA(类似SDIO协议)和iVDR(基于串行ATA)可能进一步延缓在新SoC上硬盘驱动器控制器的出现。
然而,由于处理器和硬盘消耗了大量的系统功耗,因此,要想实现主内存和硬盘驱动之间的更有效的信息传递必然会影响电池的寿命。巧妙地采用桥接器,可以提高主内存和硬盘驱动这两个子系统处于节电状态的时间百分比,从而实现更高的电池效率。
QuickLogic提供了超低功耗的IDE桥接控制器作为配套芯片来连接低功耗嵌入式处理器,从而在提升系统性能的同时减少了硬盘存储相关作业的CPU占用率,最大限度地降低了功耗。QuickLogic提供的IDE桥接器可以在实际应用中实现10Mbps~13Mbps的数据传输速率。尤其是该产品基于QuickLogic 微瓦FPGA技术,这意味着移动平台系统设计师可以跨越基于传统SRAM的FPGA造成的功耗限制和CPLD性能的挑战。同时它还遵循正兴起的总线标准,并具有整合额外系统功能的能力。
人们越来越意识到,在便携式系统增加额外系统功能的同时,必须注意其对电池寿命的影响。系统性能和功耗的最佳搭配,是通过在基于可编程逻辑的配套设备中,用硬件方法实现大量的数学算法和数据通道管理,而不是在嵌入式处理器上用软件的方法来实现。QuickLogic配套芯片方法可以为系统设计师提供更多的工具来权衡系统
应用技术 介绍 嵌入式 技术 驱动器 接口 硬盘 相关文章:
- STC系列单片机不断电下载程序应用技术(04-25)
- 单片机应用技术课程立体化教学资源建设(10-24)
- SM2965微控制器及其ISP应用技术(03-06)
- 基于DSP的3G LTE应用技术简介(01-24)
- 单片机应用技术综述(05-31)
- ESPU0808加密芯片在防抄板领域的应用技术解析(05-12)