微波EDA网,见证研发工程师的成长!
首页 > 天线设计 > 天线设计文库 > iPhone 4 的天线问题技术分析

iPhone 4 的天线问题技术分析

时间:07-17 来源:cnbeta 点击:

设是 -80dBm,衰减 24dB,信号强度剩下 -104dBm,你会发现,iPhone 4 的信号格很快从满格降到了 2 格 — 衰减同是 24dB,但信号指示器的行为和它线性的图形特征失调。

以往 iPhone 的天线在机身底部,外部有绝缘的塑料壳,而手弓形成了让天线得以正常工作的空间,所以这种「夸张」的信号显示算法在之前的机器上表现不明显,但握紧任何手 机都会衰减信号的说法,是没有错的。如果苹果一开始就不用这种算法,或者在 iOS 4 中对 iPhone 4 使用「正确」的算法,绝不会有今天这种喧嚣的场面存在。另外,iOS 取的是 10 秒平均信号,意在弱化信号骤然变化的表象,实属掩耳盗铃之举。

耍小聪明总会付出代价。而且,既然采用了更灵敏的基带芯片,何必好上加「好」?

是妥协,不是失误

AnandTech 的 iPhone 4 评测中有这么一句话:「射频是洪水猛兽。」工程师不断修正天线,增加或减少长度以接近最优的结果。它的行为古怪,所谓最优也只是相对,例如握紧 iPhone 4 居然增加了 5dB 至 10dB 的 WiFi 信号强度,超乎常人理解。

iPhone 4 的天线设计是多方妥协后的次优结果

先从联邦通信委员会 FCC 说起,FCC 严格限制手持设备的发射功率,它使用「特殊吸收率」(SAR)一值来度量。早期的手机天线位于机身外部,后来越做越短,最终消失不见,集成到了机壳中。为 了满足 FCC 的测试要求,现代手机的天线几乎都设计在底部,远离头盖骨的位置。而手的位置在头部之下,人们持机时自然握住手机底部,而非顶部。

但 FCC 的测试过程存在一个问题,它要求受测手机贴近头部,但却不考虑手持对天线的影响(它假设人手是绝缘体),AT&T 也是如此,手机需经过和 FCC 相似的测试,才准许入网,同样不考虑手持影响。因此,天线设计的要义渐渐变得为了满足测试结果,而不大考虑信号收发的效率和人手影响了。顾此而失彼,这是 第一个妥协 — 苹果为满足 FCC 的要求,又不想丧失产品的特性。

第二方是 AT&T。无线通信系统由许多基站组成,测试信号强度时,需要确定手机是连接在单个基站上,还是在不同的基站间切换。基站方位、周围地形和小区呼 吸都会影响到信号接收。如上文所说,信号同属满格状态,但在不同的测试地点抓紧 iPhone 4 后,有的仍为 5 格,有的降到 2 格。因此,虽然无法证明 AT&T 的影响因素有多大,但显然也无法证伪。

第三方是苹果设计团队和乔布斯。为了新设计和美感,而做出功能上的妥协。

失谐和衰减

天线工程师斯潘塞·韦布(Spencer Webb)在博客中写道,握住手机天线会产生两个截 然不同的后果:失谐和衰减。

可以这么理解失谐(Detuning)。想象一只空的红酒杯,用叉子去敲击,然后酒杯发出某个频率的响声。如果往杯子里倒入一些红酒再敲,响声的频 率会发生改变,变得更高了。

这对天线来说也是一样。天线在其工作频率上共振,当人们把手放在天线上时,等于载入了大量的含盐分的电介质(Dielectric),这会降低天线 的共振频率,并影响其以特定频率发射信号的能力。如果天线宽度很窄的话,甚至可能瘫痪它的工作能力。通常,称小型天线为窄带,大型天线为宽带,你可以用波 长的概念来理解。因此,这就是为什么失谐是用手触碰天线后产生的首个不良后果。对所有的天线都是如此。

接着说衰减(Attenuation),或称损耗。因为人手是电介质,因此它比空气更容易聚集电场。这被称作介电常数(Dielectric Constant),人手的介电常数很高,大约是 12 或 20,依饮食和肥胖程度的不同而变化。然而手部也是导体,虽然不是良导体,但足够让你尝到电击的滋味了 :p 。

我们称这种非良导体为「损耗」。 当射频能量穿过人手或头部时,部分会转化成热量,这就是 SAR 的由来,当手握紧天线后,这种效应会减少信号射出的能量。这就是触碰天线的第二个影响。

总结,失谐减少了电路发往天线的能量(反之亦然);衰减将射频信号转化为热量。

胶带解决不了问题

一件有趣的事情是,无论电工胶布、透明胶或其他什么「绝缘条」都解决不了按住「死点」后信号衰减的问题。仅凭此,即可证明「消费者报告」的草率和不 专业,因为「消费者报告」在那篇评测的文末建议 iPhone 4 用户用胶条遮盖以缓解症状。

再次请出天线工程师斯潘塞·韦布:

在这件事情上,重要的是弄清楚我们讨论的是天线中的射频电流(RF Currents),而不是直流电(DC)。如果用一段绝缘且薄的胶带盖住 iPhone 4 的左侧黑条,将不会有明显的改善。这是因为,虽然这段胶带有效的隔阻了直流电(0 赫兹),但是高频振荡的射频信号(1GHz,即 10 亿赫兹)却能

栏目分类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top