基于MSP430的高功率因数电源
此外,为保护芯片免受冲击电流的冲击,在ISENSE 脚处串联一个阻值为的220 Ω 电阻(如图2 中的R1)。
2)输入滤波电容的选取
在允许有20%的电感电流纹波IRIPPLE和6%的高频电压纹波U IN_PIPPLE的情况下,输入滤波电容的最大值Cin由输入电流纹波IRIPPLE和输入电压纹波U IN_RIPPLE(max)决定。输入滤波电容的值可通过以下公式计算:
、
其中fsw =65 K,ΔI RIPPLE =0.2,IRIPPLE =ΔIRIPPLE I IN_PEAK (max),ΔV IN_RIPPLE =0.06,V IN_RECTIFED (max) = √2 V IN (max) ,V IN_RIPPLE (max) =ΔVIN_RIPPLE V IN_RECTIFED(max)
3)升压电感的选取。
升压电感的最小值根据最坏的情况(占空比D 为0.5)计算得出:
系统主回路如图2 所示。
图2 主回路
2.3 功率因数测量电路设计
采用相位差测量法。利用电压电流互感器分别对电压、电流信号进行提取, 然后用精密仪表放大器INA118 对电压电流进行放大至饱和,经TLC372 整形后,测出相位差,相位差Φ 的计算原理是利用输入2 路信号过零点的时间差,以及信号的频率来计算2 路信号的相位差,首先测量单路输入信号频率,方法是记录1 路方波信号2 次连续上升沿触发的定时器计数值N1和N2,计算出2 次上升沿计数器差值ΔN1=N1-N2, 以定时器工作频率fclk为参考, 求出输入信号的频率为Fin= fclk ΔN1 .运用TI 低功耗单片机MSP430F449 的捕获功能,捕获2 路信号的过零点,记录定时器这一时刻的计算值,计算出它们之间的时间差。TI 公司的所有的FLASH 型单片机都含有Timer_B,它是程序的核心,Timer_B 由1 个16 位定时器和多路比较/ 捕获通道组成,2 路信号的相位差,Δ=360°×Δt Ti其中,ΔN2为2 路信号的上升沿分别触发计数器的差值;Ti为输入信号的周期。由相位差的计算可简化为:ΔΦ=360°×Δt ΔN1 =360°×ΔN2 ΔN1×fclk , 为防止计数器溢出,参考时钟设置为1 MHz,测相时最大计数值为1000 000/50=20 0002∧16-1=65 535;且每次测相前都对计数器B 清零。最后经余弦运算即可测得功率因数。负载端输出电压、电流经采样可算出系统视在功率。根据公式P=S×cosθ,Q=分别计算出电源的有功功率、无功功率。该方法操作简单、可达到很高的精度。电路如图3 所示。
图3 功率因数测量
2.4 过流保护电路的设计
通过单片机实时采样输出电流,当电流过大时单片机控制继电器模块使其断开,系统断电;当故障排除后测得电流值小于预设定值时单片机再次发指令使继电器闭合。电路重新正常工作。电路如图4 所示。
图4 过流保护
3 系统软件设计
本系统选用MSP430F449 低功耗单片机, 负责电压电流的相位检测、功率因数及电压电流峰值的显示、以及相应外部请求对电压值进行调整。相位检测用MSP430 定时器的捕获功能实现。首先对一路电压信号测频,外部信号的上升沿到来时触发中断,记录当前定时器计数器的数值,由两次定时器数值的差值,计算出信号的频率。然后测两路信号相位差,开始启动电压信号的捕获功能;当捕获到该路信号的上升沿并进入中断后,立刻启动定时器计数,开启电流信号的捕获功能,禁能电压信号的捕获功能。当捕获到电流信号的上升沿并进入中断后,记录当前定时器计数器的数值,由此便可计算出电压、电流的相位差,从而算出功率因数。程序中,TimerA 的外部引脚用于按键检测,故用TimerB 的捕获比较器实现[6].用MSP430 自带的AD 对电压、电流信号采样,采样模式为序列通道多次转换, 以便实时显示当前的电压、电流值。当检测到输出电流超过2.5 A 时,控制继电器的关断和电路的复位。流程如图5 所示。
图5 软件流程图
4 测试数据与分析
4.1 测试仪器
15 MHz 函数信号发生器,型号为Agilent33129A.数字示波器,型号为Tektronix TDS 1002,双通道,60 MHz .万用表的型号为FLUKE17B。
4.2 测试方案及结果如下
按照基本要求预置电压设为36 V,当负载变化时,输出电压理论值应不变恒为36 V,输出电流会随着负载的变化而变化。实际中由于各种误差的存在,输出电压和预置电压多少会有一些差距。检测实际输出电压电流,和理论值比较。
变压器副边电流通过电流I2互感器经电阻采样后送示波器显示,测其失真度。
采样电压电流经比较器后可以测得得到相位差,经余弦运算既得功率因数。减小负载使得输出电流增大, 当达到2.5 A 时,检测继电器是否调转,若跳转则过流保护功能可靠。
1)预置输出电压不变(36 V)时,改变负载,测得实际
- 嵌入式系统电源的设计与调试详解(05-18)
- 基于DSP的逆变电源控制系统设计(08-11)
- 基于TMS320F2812的数字化三相变频电源的研制(01-15)
- 基于DSP应用于线切割机床的脉冲电源设计(02-01)
- 基于DSP2407的多功能电源控制系统设计(09-08)
- 基于DSP无差拍控制的逆变电源研究(07-31)