TI采用新“金刚狼”MCU平台 使MCU总功耗锐减50%
率效率并非只适用于 CPU 的耗。有电流同样取决于系统执行定时的效率、高精度模拟外设和通信接口。如欲最大限度地降低各种不同工作负载条件下的耗,运用先进的电源管理技术是必不可少的。 “金刚狼”架构提供了 MSP430 MCU 电源管理模块的一种增强型版本。除了支持 7 种操作模式之外,“金刚狼”电源管理模块还能提供先进的电源门控 (power gating),并采用了一个高响应性的自适应稳压器。在内部,MCU 被分割成了几个功率域,以使系统能够根据应用的特殊需求动态地管理器件的每个部分。 当使系统在尽可能长的时间里处于待机模式时,就最大限度地降低了总体系统功耗。然而,系统每次在待机模式与运行模式之间切换都会产生功耗。特别地,供应给电路的电压不但达到预期电平而且重新预置子系统或外设,以再度变至运作状态,都需要时间。在这段时间里,电路吸取的功率日益增大,却并未完成任何有用的工作(见图 3)。这些唤醒损耗将导致性能下降、响应性减慢和功率效率走低,特别是在那些频繁地在“运行”与“待机”模式之间切换的系统中。 图 3:当系统被唤醒时,它将吸取功率而不执行任何有用的任务。这些唤醒损耗将导致性能下降、响应性减慢和功率效率走低,特别是在那些频繁地在“运行”与“待机”模式之间切换的系统中。 为了降低唤醒损耗,“金刚狼”采取了一种不同的方法。传统上,在不用的时候整个模块或外设都会被关断。通过采用电源门控控制器,使更多的模块或外设以一种“保持”模式运行,“金刚狼”改善了功率效率。在该模式中,对那些处于运行状态并请求时钟的模块保持全面供电。而对于那些处于空闲和未用状态的模块则施以“保持水平”的供电。这意味着将只对专门用于保持模块状态的逻辑电路供电。 电源门控可以在不牺牲性能的情况下实现显著的节能。设想一个在待机模式中处于使用状态的定时器。当此定时器主动请求一个时钟时,电源门控控制器检测到该请求并把定时器保持于一种全面运行的状态。然而,一旦定时器功能完成,则将其供电降至“保持水平”,同时维持配置状态以尽可能地降低功耗。当再次需要定时器时即可快速提供,从而最大限度地减少唤醒损耗。电源门控对于开发人员是透明的,可使他们充分利用业界领先的功率效率,而无须对每个模块或外设进行手动控制(见图 4)。 图 4:这是以一种简单的可视化方式显示的运转中的先进电源门控功能。将器件中的未使用部分维持于“保持状态”,从而使它们能以比采用其他架构时快得多的速度唤醒。 超低功耗 MCU需要具备的另一项重要功能是拥有对变化的应用负载做出快速响应的能力。利用可在不需要主 CPU 完整性能的情况下降低其供电功率的技术,即可实现大幅节能。然而,“金刚狼”平台中的智能电源模块可自动适应应用负载的变化(比如:当一个高频模块上电时),而不需要开发人员以手动的方式调节该功率(见下页上的图 5)。 操作速度根据以下条件进行调节: · 应用要求 · 最大可用功率 图 5:“金刚狼”智能电源管理模块可自动适应应用负载的变化,从而实现“透明”的功率调节。 在低数字功率下具有低稳压器开销 具体而言,负责为 MCU 的数字内核供电的自适应低压降稳压器 (LDO) 可根据需要增加其负载,从而对变化的功率要求做出响应。事实上,“金刚狼”能自动检测应用的电流需求并根据需要提供时钟与功率。 图 6:“金刚狼”能自动检测应用的电流需求,随后动态地调节自适应 LDO 以与应用的功率及定时要求相匹配,从而最大限度地提升功率效率。 凭借很高的精细度,该 LDO 能够与各种各样的应用负载相匹配。另外,这种方法还免除了增设诸如缓冲电容器(其在从低负载电流切换至高负载电流时使用)等外部组件的需要。与电源门控一样,该节能技术同样以一种对开发人员“无缝且透明”的方式实现了电源管理的自动化。 铁电随机存取存储器 (FRAM) MCU 程序代码和主要系统参数通常存储于非易失性存储器之中,最常用的是闪存或 EEPROM。闪存的写入速度偏慢,而且功耗高、可写入次数少,因而不适用于数据存储。因此,MCU 通常至少具有两类存储器:用于存储代码的闪存和用于存储数据的 SRAM。 为了克服闪存的局限性,TI 在“金刚狼”架构中集成了一个全新的非易失性存储位 - 铁电随机存取存储器 (FRAM)。TI 投资研发 FRAM 技术
MCU 平台 锐减 功耗 Wolverine 采用 新型 金刚 TI 相关文章:
- 如何将DSP和MCU两者完美结合(08-10)
- 基于MCU+DSP的运动控制硬件平台设计(10-01)
- 微控制器省电管理方法(05-04)
- 利用低成本的MCU的UART驱动智能卡(05-04)
- DSP结构特点和运算性能(07-19)
- 基于DSP+MCU的列车滚动轴承故障诊断系统设计与应用(10-08)