微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 热电厂DCS控制系统的应用与改进

热电厂DCS控制系统的应用与改进

时间:11-08 来源:互联网 点击:

调整,加快了负荷大幅变化时燃烧控制的响应速度。煤质或炉况的不同对调节效果有一定的影响。由于隶属度函数的曲线均相互交错重叠,冈此模糊控制算法对于参数变化的适应性具有较强的鲁棒性。实际运行验证了这一特点。

1.2.6 阀门的调节与限幅

规则表参数中阀门变化值对应于每个燃烧周期炉排转速的变化鲢。炉排转速控制给煤量,是保证锅炉经济、安全运行的重要控制对象。根据操作工的经验,在一定的炉况和煤质条件下。炉排转速达到一定限额厉将不再对汽包压力起决定作用。 此必须对炉排转速设置合理的上限以防燃烧不充分。污染环境。鼓风转速与炉排转速之问应根据一定的风煤比互相协调,保证燃烧的经济性。这个比例与具体的煤质、炉况、变频器转速相关,在运行中需根据现场情况及时调整。引风转速与鼓风转速应互相适应,将炉膛负压维持在一定范同内,保证燃烧的安全性。燃烧控制规则表以及锅炉各利一参数的设置如表2所示。为方便操作,将炉排转速、鼓风转速、引风转速限幅、燃烧周期等参数设置为操作员权限,井引至监控界面以便司炉工在线修改。

2 运行效果和问题

2003年DCS改造后,两套锅炉系统基本实现了炉况稳定条件下的自动控制。通过设置合适的炉排转速、鼓风转速、引风转速限幅值,基本保证了煤的充分燃烧,减少了环境污染。实现了工况稳定时整个锅炉系统的自动控制。同时由于引入燃烧周期的自适应调整‘力Ⅱ快了负荷大幅变化时的响应速度。提高了系统控制的自动化程度。 但在运行期问,发现该锅炉在负荷变化较大的工况下,控制过程中存在以下几个主要问题:锅炉汽包液位测量存在较大偏差;燃烧控制系统无法投自动。 [b]3 问题分析与改进 3.1 汽包液位控制改进[/b] 在锅炉汽包液位测量中,由于汽包液位系统是一个没有自平衡能力的被控对象。当供水量突然降低或出口蒸汽流量增大时。由于此时锅炉传给汽包的热量不变。致使液体大量汽化。造成汽包液位测量结果偏大;当供水量突然增大或出口蒸汽流量减小时,情况相反,也就是我们常说的“汽包虚假液位”.而该锅炉在汽包液位检测回路的原设计方案中忽视了这个问题;直接影响了汽包液位控制的平稳,为此,我们对汽包液位测量结果引入压力补偿,补偿公式如下:

h=[△P+gH(ρ“-ρ)]/[g(ρ”-ρ’)]

式中:h一补偿后的汽包液位;△P-变送器测量的差压值;g-重力;H一汽包高度;ρ-液体参考密度;ρ‘-水的密度;ρ“-蒸汽密度。汽包压力与ρ’、ρ”之间的关系曲线用折线近似后如表3所示。

在HS2000DCS控制点的组态中。运用RPV点中的表达式及折线化算法,很容易实现以上补偿关系。原设计所给出的汽包液位三冲量控制方案如图1所示。

通过分析发现,调节器的输人为:汽包液位设定值-汽包液位测量值+主蒸汽流量-给水流量。实际运行中由于各种扰动的影响。给水流域和主蒸汽流量几乎不可能相等。该方案的控制结果将使汽包液位产生静差。为此,采用在三冲量基础上的串级控制方案。如图2所示。由于主调节器的作用。该方案较好地消除了静差。

3.2 燃烧控制改进

原设计的燃烧控制用于氧含量测量的装置改用700B氧含量分析仪。把控制方案改为氧含量控制引风机出口挡板,炉膛负压控制送风机出口挡板的方案。并使氧含量控制的P、I作用弱一些。经过实际运行,燃烧控制系统的滞后时间相对较小,证明改进的控制方案可行。

3.3 功能扩展

转速是汽轮机运行的最主要的参数之一。对该参数实现实时监测。增加了运行人员的监测手段与途径,提高了信号显示精度,方便了运行人员的监盘与操作控制。更重要的是总调值长可通过局域网监测汽机转速。在脱网事故状态下仍可监测到汽机转速变化,从而可据此有效地进行事故处理。避免事故的进一步扩大;给水泵是为锅炉供水的关键设备,因此在2004年将原DCS系统进行扩展。将汽轮机转速和三台给水泵的变频调节信号加入到了DCS系统中。

4 结论

综合效果

DCS系统自安装投运以来,软、硬件运行基本可靠。经过改进后达到了预期的技术指标。① 控制水位精度:±10 mm.汽压:±0.03 MPa,汽温:±5℃。负压:±4 Pa;②节能效果显着。烟气含氧量和渣含碳量明显降低。经测试提高运行效率4% .实际节煤5% ,一年耗煤量按40000吨计算,每吨煤按360元人民币计算。仅节煤一项一年可节约72万元。

(2)DCS的进一步应用目标

①进一步扩展DCS系统的功能范围。实现一体化;采用先进的控制软件,进一步发挥DCS的效能。为提高电厂管理的自动化水平,进一步扩

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top