高分辨率传感器USB接口设计
本设计采用了价格为8 美元的8051 架构微控制器, 还有一只PGA(可编程增益放大器),以及一只24位Σ-Δ ADC(图1、2和3)。微控制器IC1有一个输入多工器,可采用差分模式或单端模式。它还有两个DAC输出,可以提供五个未指定的数字I/O脚(图1)。一个输出引脚驱动受程序控制的D1.其它数字引脚则用于配置两个模拟输入口。另外,微控制器的基准输出还可以送给某一个模拟输入端口。其余四个数字引脚与USB的UART芯片相连接。
示意图
3.3V的线性稳压器IC2为微控制器供电(图2)。从USB端口通过磁珠与滤波器,就可以直接为USB芯片IC1供电。这款芯片是常见而可靠的USBUART芯片,可与使用任何操作系统的计算机通信。运放IC4用作微控制器基准输出的缓冲(图3)。
运放IC示意图
使用两只三输入连接器,就可以将很多类型传感器连接到两个可配置模拟端口上,每只连接器都有一个接地端(图4)。一个接地端提供3.3V电源,其它则输出经缓冲的基准电压,其额定值为2.5V.两个连接器的中间引脚接到微控制器的模拟输入多工器上。这样,既可以测量两个单端电压,也可以将两只连接器用做差分输入。两个输入端均有独立切换的上拉与下拉电阻R10、R11、R14与R15.
模拟输入架构能够直接连接多种类型的传感器。例如,可以在接地端与输入端之间连接热敏电阻或光敏电阻,并接通上拉电阻,构成一个分压器;片上的ADC可以直接对这个分压器的输出做数字化(图5)。这种方案还采用了比率工作方式,意味着ADC使用与分压器驱动电压相同的电压基准。电流输出传感器也可以像光电二极管那样连接,即直接连到接地端与输入端之间。切换到下拉电阻,使光电流能产生一个电压。
接地端示意图
高分辨率ADC与PGA可以直接连接热电偶(图6)。通过切换一个通道上的上拉电阻和下拉电阻,就可以实现所需的偏置点。关掉所有内置电阻,就可以采用直接连接的桥式传感器(如测压元件和压力传感器)。这些情况下,应使ADC工作在差分模式。让所有开关开路亦适合于采用电位器输入或IC 传感器的场合,如SS49E霍尔效应磁场传感器。
连接示意图
当使用直接连接的传感器时, 应考虑源阻抗、信号范围、滤波,以及噪声拾取问题。你可能需要增加额外的缓冲放大器,或更精密的电压基准。有了电压基准和模拟端口的3.3V电源,就可以使这种结构成为可能。另外可以使用连接器J 1中的DAC输出来调整值, 或为传感器提供一个任意电压。注意,J1也有五个数字I/O脚(图1)。
电路板
本设计装在一个2.36英寸×1.38英寸的外壳中(图7),PCB下方有几只无源元件(图8)。提供了详情,能下载到整个设计,以及CAD/CAM文件、物料清单和软件。
- 基于FPGA的高等级视频监控系统搭建(06-05)
- 基于ARM 的高分辨率压电陶瓷驱动电源设计方案(10-08)
- DVCS分布式控制系统超高分辨率图像显示技术及应用(03-12)
- 用PIC单片机实现高分辨率频率计的一种方法(01-17)
- 基于PIC16F877A单片机的高分辨率频率计的设计(10-12)
- 支持网络传感器的嵌入式操作系统设计(11-10)