微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 通过电源管理和工作负载整合,大幅提升电信业务处理性能

通过电源管理和工作负载整合,大幅提升电信业务处理性能

时间:06-27 来源:互联网 点击:

智能风扇系统,可以用来控制温度输出和功耗。我们使用一个典型的ATCA机箱来做相关的测试,通过自动调整策略(根据周围的温度来决定风扇的转速),风扇(整个机箱的1/8)的功耗可以减少40%。

对于机箱剩余的7/8部分,可以通过嵌入式软件设置每个刀片上的CPU、内存以及其他设备的频率和工作模式,从而实现动态电源管理和/或功耗限定。通过智能固件和软件层面的控制部署电源管理策略,可以大幅减少能耗。

从系统管理的角度来看,当系统的工作负载运行在满负荷水平之下时,就可以按既定策略实现动态电源管理。同时在峰值期间也可以使用动态电源管理以减少功耗。然而,当功耗(能量)节约模式启用时,处理器频率将降低,从而影响工作负载的性能和吞吐量。

功耗限定功能可以通过显示器或制动器的内部或外部处理实现。制动器可以提升处理器的电压或提升处理器/内存的频率。制动器也可以“抑制”处理器,即通过注入死循环来延迟对指令的处理。当功耗限定达到时以及限定技术启用时,工作负载的性能可能会受到影响。

嵌入式电源管理软件

电源管理软件的拓扑结构是由多个系统守护进程的组件构成,其中每个组件都会管理一个刀片,和一个客户端组件。

图2:嵌入式电源管理的基本组件

图2:嵌入式电源管理的基本组件

客户端代表电源管理系统搜集与电源有关的数据。系统守护进程是加载在每一个刀片上的应用,扮演者电源管理模块的角色。它提供了CPU、内存、硬盘、网络和虚拟化的工作方法以及功耗限定等功能,在满足性能需求的前提下尽量降低功耗。实际的管理端可以运行在台式机或者笔记本上,通过整合并显示输出机箱、板卡和传感器(如温度)等实际功耗的信息。

图3:功耗限定功能实例

图3:功耗限定功能实例

主动电源管理

通过策略的配置,将ATCA刀片上CPU的工作模式切换至节能或主动电源管理模式后,每个刀片的功耗相比持续运行在性能模式下减少15%(参见图4和图5)。每片板卡在加载服务的情况下可以节约0.4KW的功耗(参见图5)。如果一个14槽的ATCA机框中使用了10个刀片,那每天节约的功耗大约4KW。

电源管理

图45:CPU在三种独立模式下的功耗比较

图45:CPU在三种独立模式下的功耗比较

动态迁移

减少功耗的另一个非常有效的方法就是只使用必要的设备来处理相关事件。利用Erlang概率分布算法(图表6)可以有效检测出使用率较低的时段。

图6:Erlang概率分布算法在电信网络流量监测中的实例

图6:Erlang概率分布算法在电信网络流量监测中的实例

通过上面的图表我们可以了解到,1点至7点期间的CPU使用率最低,然而,即使运行在省电模式下,每片板卡仍然在消耗电能。在这种情况下,每片板卡在主动电源管理的策略下会消耗90W的功耗,峰值性能时会上升至140W。解决的办法就是利用实时迁移策略,用最少的CPU刀片在处理这些工作负载,同时将节能模式下的刀片切换到睡眠模式,这样相比主动电源管理的模式可以节约超过25%的功耗。

通过工作负载整合提升系统性能

在工作负载和I/O处理方面,目前的市场和技术发展趋势比较倾向采用将传统的网络架构整合到一个通用平台或模块化的组件上来,以支持多网络设备和提供不同的服务功能,如应用处理、控制处理、包处理和信号处理功能等。处理器架构以及新的软件开发工具的功能提升,让开发人员可以很容易的将工作负载整合到统一的刀片架构中,这些负载包含了应用、控制以及包处理等。通过软硬件的整合,可以大幅度提升性能,并使得刀片式服务器架构在包处理解决方案中的应用大幅增加。

为了说明工作负载整合的演变,我们设计了一系列的测试方法。这些测试方法是在单一平台中,通过将CPU制造商提供的DPDK整合到ATCA处理器刀片上,以此验证处理器刀片提供的性能以及整合的IP转发服务。比较在没有使用Intel® DPDK做任何优化时,采用原生 Linux(Native Linux) IP转发时的第三层转发性能。然后,我们再分析采用Intel® DPDK技术之后所获得的IP转发性能提升的原因。

数据平面开发套件

DPDK(Data Plane Development Kit,数据平面开发套件)是一个专为x86架构处理器提供的轻量级运行环境。它提供了低功耗和Run-to-Completion(RTC,运行到完成)模式,以此最大限度的提升数据包的处理性能。而且DPDK还包含了优化的和高效的函数库,为用户提供丰富的选择,例如我们熟知的环境抽象层(EAL,Environment Abstraction Layer),它负责控制低级资源并提供优化的轮询模式驱动(PMD,Poll Mode Driver),以及更高级别应用的完整API接口,图7为软件层级结构图。

图7: Linux应用环境下的EAL和GLIBC

图7: Linux应用环境下的EAL和GLIBC

测试拓扑结构

为了测量ATCA处理器刀片在第三层处理和转发IP包的速度,我们使用图8中所示的环境进行测试。

图8:IP转发测试环境

图8:IP转发测试环境

我们的测试使用了ATCA处理器

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top