微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > ARM9(2440)对nand flash的读写操作

ARM9(2440)对nand flash的读写操作

时间:11-20 来源:互联网 点击:

static char rNF_ReadID()

{

char pMID;

char pDID;

char cyc3, cyc4, cyc5;

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READID); //读ID命令

NF_ADDR(0x0); //写0x00地址

//读五个周期的ID

pMID = NF_RDDATA8(); //厂商ID:0xEC

pDID = NF_RDDATA8(); //设备ID:0xDA

cyc3 = NF_RDDATA8(); //0x10

cyc4 = NF_RDDATA8(); //0x95

cyc5 = NF_RDDATA8(); //0x44

NF_nFCE_H(); //关闭nandflash片选

return (pDID);

}

下面介绍读操作,读操作是以页为单位进行的。如果在读取数据的过程中不进行ECC校验判断,则读操作比较简单,在写入读命令的两个周期之间写入要读取的页地址,然后读取数据即可。如果为了更准确地读取数据,则在读取完数据之后还要进行ECC校验判断,以确定所读取的数据是否正确。

在上文中我们已经介绍过,nandflash的每一页有两区:main区和spare区,main区用于存储正常的数据,spare区用于存储其他附加信息,其中就包括ECC校验码。当我们在写入数据的时候,我们就计算这一页数据的ECC校验码,然后把校验码存储到spare区的特定位置中,在下次读取这一页数据的时候,同样我们也计算ECC校验码,然后与spare区中的ECC校验码比较,如果一致则说明读取的数据正确,如果不一致则不正确。ECC的算法较为复杂,好在s3c2440能够硬件产生ECC校验码,这样就省去了不少的麻烦事。s3c2440即可以产生main区的ECC校验码,也可以产生spare区的ECC校验码。因为K9F2G08U0A是8位IO口,因此s3c2440共产生4个字节的main区ECC码和2个字节的spare区ECC码。在这里我们规定,在每一页的spare区的第0个地址到第3个地址存储main区ECC,第4个地址和第5个地址存储spare区ECC。产生ECC校验码的过程为:在读取或写入哪个区的数据之前,先解锁该区的ECC,以便产生该区的ECC。在读取或写入完数据之后,再锁定该区的ECC,这样系统就会把产生的ECC码保存到相应的寄存器中。main区的ECC保存到NFMECC0/1中(因为K9F2G08U0A是8位IO口,因此这里只用到了NFMECC0),spare区的ECC保存到NFSECC中。对于读操作来说,我们还要继续读取spare区的相应地址内容,已得到上次写操作时所存储的main区和spare区的ECC,并把这些数据分别放入NFMECCD0/1和NFSECCD的相应位置中。最后我们就可以通过读取NFESTAT0/1(因为K9F2G08U0A是8位IO口,因此这里只用到了NFESTAT0)中的低4位来判断读取的数据是否正确,其中第0位和第1位为main区指示错误,第2位和第3位为spare区指示错误。

下面就给出一段具体的页读操作程序:

U8 rNF_ReadPage(U32 page_number)

{

U32 i, mecc0, secc;

NF_RSTECC(); //复位ECC

NF_MECC_UnLock(); //解锁main区ECC

NF_nFCE_L(); //打开nandflash片选

NF_CLEAR_RB(); //清RnB信号

NF_CMD(CMD_READ1); //页读命令周期1

//写入5个地址周期

NF_ADDR(0x00); //列地址A0~A7

NF_ADDR(0x00); //列地址A8~A11

NF_ADDR((page_number) & 0xff); //行地址A12~A19

NF_ADDR((page_number >> 8) & 0xff); //行地址A20~A27

NF_ADDR((page_number >> 16) & 0xff); //行地址A28

NF_CMD(CMD_READ2); //页读命令周期2

NF_DETECT_RB(); //等待RnB信号变高,即不忙

//读取一页数据内容

for (i = 0; i < 2048; i++)

{

buffer[i] = NF_RDDATA8();

}

NF_MECC_Lock(); //锁定main区ECC值

NF_SECC_UnLock(); //解锁spare区ECC

mecc0=NF_RDDATA(); //读spare区的前4个地址内容,即第2048~2051地址,这4个字节为main区的ECC

//把读取到的main区的ECC校验码放入NFMECCD0/1的相应位置内

rNFMECCD0=((mecc0&0xff00)<8)|(mecc0&0xff);

rNFMECCD1=((mecc0&0xff000000)>>8)|((mecc0&0xff0000)>>16);

NF_SECC_Lock(); //锁定spare区的ECC值

secc=NF_RDDATA(); //继续读spare区的4个地址内容,即第2052~2055地址,其中前2个字节为spare区的ECC值

//把读取到的spare区的ECC校验码放入NFSECCD的相应位置内

rNFSECCD=((secc&0xff00)<8)|(secc&0xff);

NF_nFCE_H(); //关闭nandflash片选

//判断所读取到的数据是否正确

if ((rNFESTAT0&0xf) == 0x0)

return 0x66; //正确

else

return 0x44; //错误

}

这段程序是把某一页的内容读取到全局变量数组buffer中。该程序的输入参数直接就为K9F2G08U0A的第几页,例如我们要读取第128064页中的内容,可以调用该程序为:rNF_ReadPage(128064);。由于第128064页是第2001块中的第0页(128064=2001×64+0),所以为了更清楚地表示页与块之间的关系,也可以写为:rNF_ReadPage(2001*64);。

页写操作的大致流程为:在两个写命令周期之间分别写入页地址和数据,当然如果为了保证下次读取该数据时的正确性,还需要把main区的ECC值和spare区的ECC值写入到该页的spare区内。然后我们还需要读取状态寄存器,以判断这次写操作是否正确。下面就给出一段具体的页写操作程序,其中输入参数也是要写入数据到第几页:

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top