微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > Cortex-M3学习日志(六)-- ADC实验

Cortex-M3学习日志(六)-- ADC实验

时间:11-21 来源:互联网 点击:

选用ADC时要注意这几个参数:取样与保持时间、量化与编码方式、分辨率、转换误差、转换时间、绝对精准度、相对精准度等。

1、取样与保持

由于取样时间极短,取样输出为一串断续的窄脉冲。要把每个取样的窄脉冲信号数字化,是需要一定的时间。因此在两次取样之间,应将取样的模拟信号暂时储存到下个取样脉冲到来,这个动作称之为保持。在模拟电路设计上,因此需要增加一个取样-保持电路。为了保证有正确转换,模拟电路要保留着还未转换的数据。一个取样-保持电路可保证模拟电路中取样时,取样时间的稳定并储存,通常使用电容组件来储存电荷。根据数字信号处理的基本原理,奈奎斯特(Nyquist)取样定理(懒猫记得这个定理应该是在《信号与线性系统》这本课上学的^_^),若要能正确且忠实地呈现所撷取的模拟信号,必须取样频率至少高于最大频率的2倍。例如,若是输入一个100Hz的正弦波的话,最小的取样频率至少要2倍,即是200Hz。虽说理论值是如此,但真正在应用时,最好是接近10倍才会有不错的还原效果(因取样点越多)。若针对多信道的A/D转换器来说,就必须乘上信道数,这样平均下去,每一个通道才不会有失真的情况产生。

2、量化与编码

量化与编码电路是A/D转换器的核心组成的部分,一般对取样值的量化方式有下列两种:

(1)只舍去不进位

首先取一最小量化单位Δ=U/2n,U是输入模拟电压的最大值,n是输出数字数值的位数。当输入模拟电压U在0~Δ之间,则归入0Δ,当U在Δ~2Δ之间,则归入1Δ。透过这样的量化方法产生的最大量化误差为Δ/2,而且量化误差总是为正,+1/2LSB。

(2)有舍去有进位

如果量化单位Δ=2U/(2 n+1–1),当输入电压U在0~Δ/2之间,归入0Δ,当U在Δ/2~3/2Δ之间的话,就要归入1Δ。这种量化方法产生的最大量化误差为Δ/2,而且量化误差有正,有负,为±1/2LSB。量化结果也造成了所谓的量化误差。

3、解析度

指A/D转换器所能分辨的最小模拟输入量。通常用转换成数字量的位数来表示,如8-bit,10-bit,12-bit与16-bit等。位数越高,分辨率越高。若小于最小变化量的输入模拟电压的任何变化,将不会引起输出数字值的变化。采用12-bit的AD574,若是满刻度为10V的话,分辨率即为10V / 212 = 2.44mV。而常用的8-bit的ADC0804,若是满刻度为5V的话,分辨率即为5V / 28 = 19.53mV。选择适用的A/D转换器是相当重要的,并不是分辨率越高越好。不需要分辨率高的场合,所撷取到的大多是噪声。分辨率太低,会有无法取样到所需的信号。

4、转换误差

通常以相对误差的形式输出,其表示A/D转换器实际输出数字值与理想输出数字值的差别,并用最低有效位LSB的倍数表示。

5、转换时间

转换时间是A/D转换完成一次所需的时间。从启动信号开始到转换结束并得到稳定的数字输出值为止的时间间隔。转换时间越短则转换速度就越快。

6、精准度

对于A/D转换器,精准度指的是在输出端产生所设定的数字数值,其实际需要的模拟输入值与理论上要求的模拟输入值之差。精确度依计算方式不同,可以区分为:绝对精确度与相对精确度。所谓的绝对精确度是指实际输出值与理论输出值的接近程度,其相关的关系是如下式子所列:

相对精准度指的是满刻度值校准以后,任意数字输出所对应的实际模拟输入值(中间值)与理论值(中间值)之差。对于线性A/D转换器,相对精准度就是它的线性程度。由于电路制作上影响,会产生像是非线性误差,或是量化误差等减低相对精准度的因素。相对精确度是指实际输出值与理想理论满刻输出值之接近程度,其相关的关系是如下式子所列:

基本上,一个n-bit的转换器就有n个数字输出位。这种所产生的位数值是等效于在A/D转换器的输入端的模拟大小特性值。如果外部所要输入电压或是电流量较大的话,所转换后的的位数值也就较大。透过并列端口接口或是微处理机连接A/D转换器时,必须了解如何去控制或是驱动这颗A/D转换器的问题。因此需要了解到A/D转换器上的控制信号有哪些。

懒猫为了总结学过的东东,翻箱倒塌柜,终于找到了大学的课本,又在大学城的图书包管里面坐了几个小时,当然了懒猫不也在网上转了N久,所以呢,以上知识大部分来源网络,懒猫囫囵吞枣的咽进了肚里,但大部分也开始消化了,嘻嘻……好了,这ADC有知识先暂时总结到这,下面说一说这次实验的思路(是思路不是丝路^_^)及电路图,并简单的总结一下LPC1768内部集成的ADC。

LPC1768内部集成的是12位主次逼近式的模数转换器,具有8

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top