微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 无线电测向入门必备

无线电测向入门必备

时间:07-06 来源:互联网 点击:

五、乌兰韦伯尔测向体制
乌兰韦伯尔测向体制的测向原理:采用大基础测向天线阵,在圆周上架设多付测向天线,来波信号经过可旋转的角度计、移相电路、合差电路,形成合差方向图,而后将信号馈送给接收机。通过旋转角度计,旋转合差方向图,测找来波方向。
以40付测向天线阵元为例,角度计瞬间可与12付天线元耦合,而后分别经过移相补偿电路将信号相位对齐,形成可旋转的等效直线天线阵,12付天线分成两组,每组6付,两组间经过合差电路相加、减,形成合、差方向图。测向时以合、差方向图测找来波方向。在来波方向上,由于两组天线均处在来波的等相位面上,两组天线信号大小相等,差方向图时,输出相减为"零",合方向图时,为一组天线信号输出的二倍。
由于乌兰韦伯尔测向是进行相位比较,人们常把它归类在比相式测向机。但是从使用者看,最终使用的是信号幅度比较,因此说它是幅度比较式测向机,也有道理。乌兰韦伯尔测向原理方框图如图(11)所示。
11-1024x494
图11 乌兰韦伯尔测向原理框图
短波乌兰韦伯尔测向体制,是典型的大基础,测向天线阵直径是最低工作波长的1~5倍。天线阵直径尺寸,根据低端工作频率的不同,达到数百甚至上千米。测向天线单元,可以是宽频带直立天线,也可以是对数周期天线。为了提高天线接收效能,通常在天线阵内侧使用反射网。一付天线阵难于覆盖全部短波频段时,一般是采用内高频,外低频的双层阵。
乌兰韦伯尔测向体制的特点:由于采用大基础天线阵,测向灵敏度高,测向准确度高,测向分辨率高,抗波前失真、抗干扰性能好,可以提供监测综合利用。由于乌兰韦伯尔测向机要求数十根天线、馈线电特性完全一致,加之角度计设计、工艺要求高,以及需要大面积平坦开阔的天线架设场地,这无疑增加了造价和工程建设的难度。带来的问题是造价高,测向场地要求高。

六、到达时间差测向体制
到达时间差测向体制的测向原理:依据电波在行进中,通过测量电波到达测向天线阵各个测向天线单元时间上的差别,确定电波到来的方向。它类似于比相式测向,但是这里测量的参数是时间差,而不是相位差。该测向体制要求被测信号具有确定的调制方式。
到达时间差测向原理基本公式如公式(4)所示。设:垂直架设的测向天线单元A、B间距为2b,来波方向与AB连线的垂线的夹角为θ,来波仰角为β,电波传播速度为v,则天线B较天线A感应信号延迟时间为τ,
2b
于是有:τ=(——)SinθCosβ
v
则来波方向θ可求,为:

θ=arcSin[(———)Cosβ](4)
2b
在上式中,τ为实际测量时间差。短波的来波仰角β需要估计,而超短波来波仰角β为"零",即Cosβ=1。
测向原理方框图如图(12)所示。
实际使用中,为了覆盖360度方向,至少需要架设三付分立的测向天线。测向天线的间距有长、短基线之分,长基线的测向精度明显好于短基线。到达时间差测向体制基于时间标准和对时间的精确测量,以现在的技术水平而言,时间间隔的测量可达到1ns的精确度,当间距为10米时,测向的准确度可以达到1度。
12-733x1024
图12到达时间差测向原理框图
到达时间差测向体制的特点:测向准确度高,灵敏度高,测向速度快,极化误差不敏感,没有间距误差,测向场地环境要求低。但是抗干扰性能不好,载波必须有确定的调制,目前应用尚不普及。

七、空间谱估计测向体制
空间谱估计测向体制的测向原理:在已知座标的多元天线阵中,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大,得到矢量信号,将其采样量化为数字信号阵列,送给空间谱估计器,运用确定的算法求出各个电波的来波方向、仰角、极化等参数。
空间谱估计测向原理方框图见图(13)。
以四元天线阵为例,空间谱估计测向的基本公式,如公式(5)所示。空间谱估计测向是把每个天线的接收信号,与其他各个天线的信号都进行比较,这就是相关矩阵法,即协方差矩阵法,它完整地反映了空间电磁场的实际情况。具体地说就是构成如下的协方差矩阵:

B1

13-1024x618
图13空间谱估计测向原理框图
在上式中:Xn为n号天线的输出,H为共轭转置符号。空间谱估计四元天线阵的示意图如图(14)所示。
14
图14 空间谱估计四元阵示意图
由公式(5)可见,四元阵的协方差矩阵有16个元素,空间谱估计测向,充分利用了测向天线阵各个阵元从空间电磁场接收到的全部信息,而传统的测向方式仅仅利用了其中的一少部分信息(相位或者幅度),因此传统的测向方式不能在多波环境下发挥作用。空间谱估计测向,基于最新的阵列处理理论、算法与技术,具有超分辨测向能力。所谓超分辨测向,是指对同信道中,同时到达的、处于天线阵固有波束宽度以内的、两个以上的电波,能够同时测向。这在传统的测向方法中是无法实现的。构成协方差矩阵是空间谱估计测向的基本出发点,但是对协方差矩阵的处理,在不同的算法中是不相同的,其中典型的是多信号分类算法(MUSIC)。
空间谱估计测向体制的特点:空间谱估计测向技术可以实现对几个相干波同时测向;可以实现对同信道中、同时存在的多个信号,同时测向;可以实现超分辨测向;空间谱估计测向,仅需要很少的信号采样,就能精确测向,因而适用于对跳频信号测向;空间谱估计测向,可以实现高测向灵敏度和高测向准确度,其测向准确度要比传统测向体制高得多,即使信噪比下降至0db,仍然能够满意地工作(而传统测向体制,信噪比通常需要20db);测向场地环境要求不高,可以实现天线阵元方向特性选择及阵元位置选择的灵活性。以上空间谱估计测向的优点,正是传统测向方法长期以来存在的疑难问题。
空间谱估计同,尚在研究试验阶段。在这个系统中,要求具备宽带测向天线,要求各个天线阵元之间和多信道接收机之间,电性能具有一致性。此外还需要简捷高精度的计算方法和高性能的运算处理器,以便解决实用化问题。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top