微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > STC89C52单片机驱动CC1101无线模块的接收C语言程序

STC89C52单片机驱动CC1101无线模块的接收C语言程序

时间:11-30 来源:互联网 点击:
#include
#include #defineINT8Uunsigned char#defineINT16Uunsigned int#define WRITE_BURST     0x40//连续写入#define READ_SINGLE     0x80//读#define READ_BURST      0xC0//连续读#define BYTES_IN_RXFIFO     0x7F  //接收缓冲区的有效字节数#define CRC_OK              0x80 //CRC校验通过位标志//************CC1100接口***************sbit GDO0=P3^3;sbit GDO2=P1^4;sbitMISO=P1^2;sbitMOSI=P1^1;sbitSCK=P3^2;sbitCSN=P1^3;//sbit GDO0=P1^3;//sbit GDO2=P1^2;//sbitMISO=P1^4;//sbitMOSI=P3^2;//sbitSCK=P1^1;//sbitCSN=P3^3;//**************按键****************sbit    KEY1    =P3^6;sbit    KEY2    =P3^7;//**********数码管位选**********sbitled3=P2^0;sbitled2=P2^1;sbitled1=P2^2;sbitled0=P2^3;//**************蜂鸣器***********sbit BELL=P3^4;//*************数码管?****************INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};         //0~~9段码INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};//***************按键****************INT8U data temp_data[2]={0x00,0x00};INT8U dispaly[8], temp[6];//更多功率参数设置可详细参考DATACC1100英文文档中第48-49页的参数表//INT8U PaTabel[8] = {0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04};  //-30dBm   功率最小INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};  //0dBm//INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0};   //10dBm     功率最大//****************************void SpiInit(void);void CpuInit(void);void RESET_CC1100(void);void POWER_UP_RESET_CC1100(void);void halSpiWriteReg(INT8U addr, INT8U value);void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);void halSpiStrobe(INT8U strobe);INT8U halSpiReadReg(INT8U addr);void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);INT8U halSpiReadStatus(INT8U addr);void halRfWriteRfSettings(void);void halRfSendPacket(INT8U *txBuffer, INT8U size);INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);  void StartUART( void );void R_S_Byte(INT8U R_Byte);//************************// CC1100 STROBE, CONTROL AND STATUS REGSITER#define CCxxx0_IOCFG2       0x00        // GDO2 output pin configuration#define CCxxx0_IOCFG1       0x01        // GDO1 output pin configuration#define CCxxx0_IOCFG0       0x02        // GDO0 output pin configuration#define CCxxx0_FIFOTHR      0x03        // RX FIFO and TX FIFO thresholds#define CCxxx0_SYNC1        0x04        // Sync word, high INT8U#define CCxxx0_SYNC0        0x05        // Sync word, low INT8U#define CCxxx0_PKTLEN       0x06        // Packet length#define CCxxx0_PKTCTRL1     0x07        // Packet automation control#define CCxxx0_PKTCTRL0     0x08        // Packet automation control#define CCxxx0_ADDR         0x09        // Device address#define CCxxx0_CHANNR       0x0A        // Channel number#define CCxxx0_FSCTRL1      0x0B        // Frequency synthesizer control#define CCxxx0_FSCTRL0      0x0C        // Frequency synthesizer control#define CCxxx0_FREQ2        0x0D        // Frequency control word, high INT8U#define CCxxx0_FREQ1        0x0E        // Frequency control word, middle INT8U#define CCxxx0_FREQ0        0x0F        // Frequency control word, low INT8U#define CCxxx0_MDMCFG4      0x10        // Modem configuration#define CCxxx0_MDMCFG3      0x11        // Modem configuration#define CCxxx0_MDMCFG2      0x12        // Modem configuration#define CCxxx0_MDMCFG1      0x13        // Modem configuration#define CCxxx0_MDMCFG0      0x14        // Modem configuration#define CCxxx0_DEVIATN      0x15        // Modem deviation setting#define CCxxx0_MCSM2        0x16        // Main Radio Control State Machine configuration#define CCxxx0_MCSM1        0x17        // Main Radio Control State Machine configuration#define CCxxx0_MCSM0        0x18        // Main Radio Control State Machine configuration#define CCxxx0_FOCCFG       0x19        // Frequency Offset Compensation configuration#define CCxxx0_BSCFG        0x1A        // Bit Synchronization configuration#define CCxxx0_AGCCTRL2     0x1B        // AGC control#define CCxxx0_AGCCTRL1     0x1C        // AGC control#define CCxxx0_AGCCTRL0     0x1D        // AGC control#define CCxxx0_WOREVT1      0x1E        // High INT8U Event 0 timeout#define CCxxx0_WOREVT0      0x1F        // Low INT8U Event 0 timeout#define CCxxx0_WORCTRL      0x20        // Wake On Radio control#define CCxxx0_FREND1       0x21        // Front end RX configuration#define CCxxx0_FREND0       0x22        // Front end TX configuration#define CCxxx0_FSCAL3       0x23        // Frequency synthesizer calibration#define CCxxx0_FSCAL2       0x24        // Frequency synthesizer calibration#define CCxxx0_FSCAL1       0x25        // Frequency synthesizer calibration#define CCxxx0_FSCAL0       0x26        // Frequency synthesizer calibration#define CCxxx0_RCCTRL1      0x27        // RC oscillator configuration#define CCxxx0_RCCTRL0      0x28        // RC oscillator configuration#define CCxxx0_FSTEST       0x29        // Frequency synthesizer calibration control#define CCxxx0_PTEST        0x2A        // Production test#define CCxxx0_AGCTEST      0x2B        // AGC test#define CCxxx0_TEST2        0x2C        // Various test settings#define CCxxx0_TEST1        0x2D        // Various test settings#define CCxxx0_TEST0        0x2E        // Various test settings// Strobe commands#define CCxxx0_SRES         0x30        // Reset chip.#define CCxxx0_SFSTXON      0x31        // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).// If in RX/TX: Go to a wait state where only the synthesizer is// running (for quick RX / TX turnaround).#define CCxxx0_SXOFF        0x32        // Turn off crystal oscillator.#define CCxxx0_SCAL         0x33        // Calibrate frequency synthesizer and turn it off// (enables quick start).#define CCxxx0_SRX          0x34        // Enable RX. Perform calibration first if coming from IDLE and// MCSM0.FS_AUTOCAL=1.#define CCxxx0_STX          0x35        // In IDLE state: Enable TX. Perform calibration first if// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:// Only go to TX if channel is clear.#define CCxxx0_SIDLE        0x36        // Exit RX / TX, turn off frequency synthesizer and exit// Wake-On-Radio mode if applicable.#define CCxxx0_SAFC         0x37        // Perform AFC adjustment of the frequency synthesizer#define CCxxx0_SWOR         0x38        // Start automatic RX polling sequence (Wake-on-Radio)#define CCxxx0_SPWD         0x39        // Enter power down mode when CSn goes high.#define CCxxx0_SFRX         0x3A        // Flush the RX FIFO buffer.#define CCxxx0_SFTX         0x3B        // Flush the TX FIFO buffer.#define CCxxx0_SWORRST      0x3C        // Reset real time clock.#define CCxxx0_SNOP         0x3D        // No operation. May be used to pad strobe commands to two// INT8Us for simpler software.#define CCxxx0_PARTNUM      0x30#define CCxxx0_VERSION      0x31#define CCxxx0_FREQEST      0x32#define CCxxx0_LQI          0x33#define CCxxx0_RSSI         0x34#define CCxxx0_MARCSTATE    0x35#define CCxxx0_WORTIME1     0x36#define CCxxx0_WORTIME0     0x37#define CCxxx0_PKTSTATUS    0x38#define CCxxx0_VCO_VC_DAC   0x39#define CCxxx0_TXBYTES      0x3A#define CCxxx0_RXBYTES      0x3B#define CCxxx0_PATABLE      0x3E#define CCxxx0_TXFIFO       0x3F#define CCxxx0_RXFIFO       0x3F// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registerstypedef struct S_RF_SETTINGS{INT8U FSCTRL2;INT8U FSCTRL1;   // Frequency synthesizer control.INT8U FSCTRL0;   // Frequency synthesizer control.INT8U FREQ2;     // Frequency control word, high INT8U.INT8U FREQ1;     // Frequency control word, middle INT8U.INT8U FREQ0;     // Frequency control word, low INT8U.INT8U MDMCFG4;   // Modem configuration.INT8U MDMCFG3;   // Modem configuration.INT8U MDMCFG2;   // Modem configuration.INT8U MDMCFG1;   // Modem configuration.INT8U MDMCFG0;   // Modem configuration.INT8U CHANNR;    // Channel number.INT8U DEVIATN;   // Modem deviation setting (when FSK modulation is enabled).INT8U FREND1;    // Front end RX configuration.INT8U FREND0;    // Front end RX configuration.INT8U MCSM0;     // Main Radio Control State Machine configuration.INT8U FOCCFG;    // Frequency Offset Compensation Configuration.INT8U BSCFG;     // Bit synchronization Configuration.INT8U AGCCTRL2;  // AGC control.INT8U AGCCTRL1;  // AGC control.INT8U AGCCTRL0;  // AGC control.INT8U FSCAL3;    // Frequency synthesizer calibration.INT8U FSCAL2;    // Frequency synthesizer calibration.INT8U FSCAL1;    // Frequency synthesizer calibration.INT8U FSCAL0;    // Frequency synthesizer calibration.INT8U FSTEST;    // Frequency synthesizer calibration controlINT8U TEST2;     // Various test settings.INT8U TEST1;     // Various test settings.INT8U TEST0;     // Various test settings.INT8U IOCFG2;    // GDO2 output pin configurationINT8U IOCFG0;    // GDO0 output pin configurationINT8U PKTCTRL1;  // Packet automation control.INT8U PKTCTRL0;  // Packet automation control.INT8U ADDR;      // Device address.INT8U PKTLEN;    // Packet length.} RF_SETTINGS;/////////////////////////////////////////////////////////////////				   const RF_SETTINGS rfSettings ={0x00,0x08,   // FSCTRL1   Frequency synthesizer control.0x00,   // FSCTRL0   Frequency synthesizer control.0x10,   // FREQ2     Frequency control word, high byte.0xA7,   // FREQ1     Frequency control word, middle byte.0x62,   // FREQ0     Frequency control word, low byte.0x5B,   // MDMCFG4   Modem configuration.0xF8,   // MDMCFG3   Modem configuration.0x03,   // MDMCFG2   Modem configuration.0x22,   // MDMCFG1   Modem configuration.0xF8,   // MDMCFG0   Modem configuration.0x00,   // CHANNR    Channel number.0x47,   // DEVIATN   Modem deviation setting (when FSK modulation is enabled).0xB6,   // FREND1    Front end RX configuration.0x10,   // FREND0    Front end RX configuration.0x18,   // MCSM0     Main Radio Control State Machine configuration.0x1D,   // FOCCFG    Frequency Offset Compensation Configuration.0x1C,   // BSCFG     Bit synchronization Configuration.0xC7,   // AGCCTRL2  AGC control.0x00,   // AGCCTRL1  AGC control.0xB2,   // AGCCTRL0  AGC control.0xEA,   // FSCAL3    Frequency synthesizer calibration.0x2A,   // FSCAL2    Frequency synthesizer calibration.0x00,   // FSCAL1    Frequency synthesizer calibration.0x11,   // FSCAL0    Frequency synthesizer calibration.0x59,   // FSTEST    Frequency synthesizer calibration.0x81,   // TEST2     Various test settings.0x35,   // TEST1     Various test settings.0x09,   // TEST0     Various test settings.0x0B,   // IOCFG2    GDO2 output pin configuration.0x06,   // IOCFG0D   GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.0x04,   // PKTCTRL1  Packet automation control.0x05,   // PKTCTRL0  Packet automation control.0x00,   // ADDR      Device address.0x0c    // PKTLEN    Packet length.};//***************************//函数名:delay(unsigned int s)//输入:时间//输出:无//功能描述:普通廷时,内部用//****************************static void delay(unsigned int s){unsigned int i;for(i=0; i0;i--);  }void halWait(INT16U timeout) {do {_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();} while (--timeout);}void SpiInit(void){CSN=0;SCK=0;CSN=1;}/*****************************//函数名:CpuInit()//输入:无//输出:无//功能描述:SPI初始化程序/*************************************/void CpuInit(void){SpiInit();delay(5000);}//*************************************//函数名:SpisendByte(INT8U dat)//输入:发送的数据//输出:无//功能描述:SPI发送一个字节//*************************************INT8U SpiTxRxByte(INT8U dat){INT8U i,temp;temp = 0;SCK = 0;for(i=0; i<8; i++){if(dat & 0x80){MOSI = 1;}else MOSI = 0;dat <= 1;SCK = 1;_nop_();_nop_();temp <= 1;if(MISO)temp++;SCK = 0;_nop_();_nop_();}return temp;}//*************************************//函数名:void RESET_CC1100(void)//输入:无//输出:无//功能描述:复位CC1100//*************************************void RESET_CC1100(void){CSN = 0;while (MISO);SpiTxRxByte(CCxxx0_SRES); //写入复位命令while (MISO);CSN = 1;}//************************************//函数名:void POWER_UP_RESET_CC1100(void)//输入:无//输出:无//功能描述:上电复位CC1100//**********************************void POWER_UP_RESET_CC1100(void){CSN = 1;halWait(1);CSN = 0;halWait(1);CSN = 1;halWait(41);RESET_CC1100();   //复位CC1100}//*************************************//函数名:void halSpiWriteReg(INT8U addr, INT8U value)//输入:地址和配置字//输出:无//功能描述:SPI写寄存器//************************************void halSpiWriteReg(INT8U addr, INT8U value){CSN = 0;while (MISO);SpiTxRxByte(addr);//写地址SpiTxRxByte(value);//写入配置CSN = 1;}//***********************************//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)//输入:地址,写入缓冲区,写入个数//输出:无//功能描述:SPI连续写配置寄存器//**********************************void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count){INT8U i, temp;temp = addr | WRITE_BURST;CSN = 0;while (MISO);SpiTxRxByte(temp);for (i = 0; i < count; i++){SpiTxRxByte(buffer[i]);}CSN = 1;}//*******************************//函数名:void halSpiStrobe(INT8U strobe)//输入:命令//输出:无//功能描述:SPI写命令//******************************void halSpiStrobe(INT8U strobe){CSN = 0;while (MISO);SpiTxRxByte(strobe);//写入命令CSN = 1;}//***********************************//函数名:INT8U halSpiReadReg(INT8U addr)//输入:地址//输出:该寄存器的配置字//功能描述:SPI读寄存器//**********************************INT8U halSpiReadReg(INT8U addr){INT8U temp, value;temp = addr|READ_SINGLE;//读寄存器命令CSN = 0;while (MISO);SpiTxRxByte(temp);value = SpiTxRxByte(0);CSN = 1;return value;}//**********************************//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)//输入:地址,读出数据后暂存的缓冲区,读出配置个数//输出:无//功能描述:SPI连续写配置寄存器//*********************************				   void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count){INT8U i,temp;temp = addr | READ_BURST;//写入要读的配置寄存器地址和读命令CSN = 0;while (MISO);SpiTxRxByte(temp);  for (i = 0; i < count; i++){buffer[i] = SpiTxRxByte(0);}CSN = 1;}//******************************//函数名:INT8U halSpiReadReg(INT8U addr)//输入:地址//输出:该状态寄存器当前值//功能描述:SPI读状态寄存器//*******************************INT8U halSpiReadStatus(INT8U addr){INT8U value,temp;temp = addr | READ_BURST;//写入要读的状态寄存器的地址同时写入读命令CSN = 0;while (MISO);SpiTxRxByte(temp);value = SpiTxRxByte(0);CSN = 1;return value;}//*********************************//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)//输入:无//输出:无//功能描述:配置CC1100的寄存器//********************************void halRfWriteRfSettings(void){halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL2);// Write register settingshalSpiWriteReg(CCxxx0_FSCTRL1,  rfSettings.FSCTRL1);halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL0);halSpiWriteReg(CCxxx0_FREQ2,    rfSettings.FREQ2);halSpiWriteReg(CCxxx0_FREQ1,    rfSettings.FREQ1);halSpiWriteReg(CCxxx0_FREQ0,    rfSettings.FREQ0);halSpiWriteReg(CCxxx0_MDMCFG4,  rfSettings.MDMCFG4);halSpiWriteReg(CCxxx0_MDMCFG3,  rfSettings.MDMCFG3);halSpiWriteReg(CCxxx0_MDMCFG2,  rfSettings.MDMCFG2);halSpiWriteReg(CCxxx0_MDMCFG1,  rfSettings.MDMCFG1);halSpiWriteReg(CCxxx0_MDMCFG0,  rfSettings.MDMCFG0);halSpiWriteReg(CCxxx0_CHANNR,   rfSettings.CHANNR);halSpiWriteReg(CCxxx0_DEVIATN,  rfSettings.DEVIATN);halSpiWriteReg(CCxxx0_FREND1,   rfSettings.FREND1);halSpiWriteReg(CCxxx0_FREND0,   rfSettings.FREND0);halSpiWriteReg(CCxxx0_MCSM0 ,   rfSettings.MCSM0 );halSpiWriteReg(CCxxx0_FOCCFG,   rfSettings.FOCCFG);halSpiWriteReg(CCxxx0_BSCFG,    rfSettings.BSCFG);halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);halSpiWriteReg(CCxxx0_FSCAL3,   rfSettings.FSCAL3);halSpiWriteReg(CCxxx0_FSCAL2,   rfSettings.FSCAL2);halSpiWriteReg(CCxxx0_FSCAL1,   rfSettings.FSCAL1);halSpiWriteReg(CCxxx0_FSCAL0,   rfSettings.FSCAL0);halSpiWriteReg(CCxxx0_FSTEST,   rfSettings.FSTEST);halSpiWriteReg(CCxxx0_TEST2,    rfSettings.TEST2);halSpiWriteReg(CCxxx0_TEST1,    rfSettings.TEST1);halSpiWriteReg(CCxxx0_TEST0,    rfSettings.TEST0);halSpiWriteReg(CCxxx0_IOCFG2,   rfSettings.IOCFG2);halSpiWriteReg(CCxxx0_IOCFG0,   rfSettings.IOCFG0);    halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);halSpiWriteReg(CCxxx0_ADDR,     rfSettings.ADDR);halSpiWriteReg(CCxxx0_PKTLEN,   rfSettings.PKTLEN);}//**********************************************//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)//输入:发送的缓冲区,发送数据个数//输出:无//功能描述:CC1100发送一组数据//*****************************************void halRfSendPacket(INT8U *txBuffer, INT8U size){halSpiWriteReg(CCxxx0_TXFIFO, size);halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);//写入要发送的数据halSpiStrobe(CCxxx0_STX);//进入发送模式发送数据// Wait for GDO0 to be set -> sync transmittedwhile (!GDO0);// Wait for GDO0 to be cleared -> end of packetwhile (GDO0);halSpiStrobe(CCxxx0_SFTX);}void setRxMode(void){halSpiStrobe(CCxxx0_SRX);//进入接收状态}//---------------------------------------------------------------------------INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length){INT8U status[2];INT8U packetLength;INT8U i=(*length)*4;  // 具体多少要根据datarate和length来决定halSpiStrobe(CCxxx0_SRX);//进入接收状态//delay(5);//while (!GDO1);//while (GDO1);delay(2);while (GDO0){delay(2);--i;if(i<1)return 0;    }if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0{packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度{halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据*length = packetLength;//把接收数据长度的修改为当前数据的长度// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区return (status[1] & CRC_OK);//如果校验成功返回接收成功}else{*length = packetLength;halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区return 0;}}elsereturn 0;}//*****************************************************************************************void disdignit(){char i;if(temp[0]){for(i=0;i<3;i++){P0=0xC6;led0=0;delay1(40);led0=1;P0=seg[temp[1]];led1=0;delay1(40);led1=1;P0=seg1[temp[5]];led2=0;delay1(40);led2=1;P0=seg[temp[4]];led3=0;delay1(40);led3=1;}}}//********************************************************************************void StartUART( void ){  //波特率4800SCON = 0x50;TMOD = 0x20;TH1 = 0xFA;TL1 = 0xFA;PCON = 0x00;TR1 = 1;}void R_S_Byte(INT8U R_Byte){SBUF = R_Byte;  while( TI == 0 );//查询法TI = 0;}void main(void){INT8U i,leng =0;INT8U RxBuf[8]={0};// 8字节, 如果需要更长的数据包,请正确设置CpuInit();POWER_UP_RESET_CC1100();halRfWriteRfSettings();halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);//发射功率设置delay(6000);StartUART();while(1){leng =4; // 预计接受8 bytesif(halRfReceivePacket(RxBuf,&leng))  //判断是否接收到数据{temp[0]=RxBuf[3];      //符号位temp[2]=((RxBuf[2]<4)|RxBuf[1]);//整数位temp[1]=RxBuf[0];//小数位temp[4]=RxBuf[2];//十位temp[5]=RxBuf[1];/*for(i=0;i<3;i++){R_S_Byte(temp[2-i]);delay(100);} */disdignit();disdignit();R_S_Byte(t);disdignit();disdignit();disdignit();R_S_Byte(0x30+temp[4]);R_S_Byte(0x30+temp[5]);R_S_Byte(.);R_S_Byte(0x30+temp[1]);disdignit();disdignit();}if(temp[2]>=0x30)//大于30度时报警,0x30转换成10进制为48{BELL=0;   //打开蜂明器}else{BELL=1;  //关闭蜂明器}}}

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top