射频同轴连接器与电缆组件的失效分析
(2)接触不良
接触不良常常导致信号时有时无,电性能时好时坏,这种现象在连接器使用中时有发生。原因有三:
a.由于弹性处理时欠时效,零件硬度未达到图纸要求,所以在多次插拔后弹性逐渐松弛,接触压力明显下降,从而导致接触不良。
b.发现少数批次有部分产品中插孔、插针超差,未达到图纸规定。例如,插针直径比图纸规定小了一点或插孔虽然已收口,但未达到图纸规定,尺寸略大了一些。当这种插针或插孔插合后,最容易产生接触不良(虽有接触力,但小于军标规定值)。
c.插针、插孔使用时间过长,已严重磨损,这也是常见的现象。
(3)锈蚀
目前我国加工射频同轴连接器的材料,内导体大都采用铜合金加工后镀金或镀银,极少数也有镀镍,外导体大都是采用铜合金加工后镀镍或铬。与国外产品相比,我国产品大多数镀纯金,而国外镀金合金,所以国内产品耐磨性差,镍层有时发现起皮、剥落等,也容易引起氧化,特别是国内部分工厂为降低成本而采用导体镀银,又没有涂有效的防护氧化层,所以镀银表面极易氧化发黑,尤其在恶劣环境下使用,更加速了内、外导体表面严重氧化,导致接触电阻、插损激增,电接触失效。
2.4电缆组件的失效
电缆组件通常是由电缆连接器与高频电缆两部分组成,因此前面所讨论的射频同轴连接器的失效模式与机理同样完全适合于电缆组件。但电缆组件失效模式和机理又有别于一般的连接器,即电缆与电缆连接器尾端连接部产生失效也将导致整个电缆组件的失效。由于电缆连接尾部结构不同,其失效模式与机理也不同。目前国内、外常见的电缆组件有下面三种结构,即:
(1)螺母压紧型:电缆连接器尾部与电缆屏蔽层采用螺母压紧方式进行连接
(2)焊接型:电缆连接器尾端与电缆屏蔽层采用焊接方式进行连接
(3)压接型:电缆连接器尾端与电缆屏蔽层采用专用压接工具在强大的压力作用下使金属套筒产生较大的塑性变形和塑性流动与连接器外导体进行连接
综上所述,我们根据十年来射频同轴连接器及电缆组件研制、生产中常见的失效模式和机理进行了较详细的分析讨论。必须强调指出的是这些失效模式往往不是孤立的,而是相互间有密切联系的。
若插针与插孔不接触或接触不良,不仅导致开路或接触电阻激增,同时也会导致插入损耗激增和反射失效。所以实际上任何一种失效都有可能导致连接器和整个组件失效。
当然,除了上述失效模式外,还出现零件漏工序或尺寸错差及产生误装、漏装等一些偶然失效因子。例:不同电缆连接器有时内导体尺寸、形状完全相同,唯与电缆相配的孔径尺寸略有不同,加工时把图纸误配,检验时疏忽漏检,直到装配电缆时发现内导体孔径与电缆内导体尺寸不配而无法装配。这些特殊的、非常见的失效因子,在此不再详细讨论。
三.狠抓设计、加工等环节,努力提高连接器的可靠性
众所周知,高质量、高可靠的电子产品,不仅是设计出来的,而且是制造出来的。正如MIL-STD-785B指出,可靠性工程任务的焦点应当集中在对可靠性设计的缺陷、薄弱环节及工艺缺陷的预防、检测和纠正上。所以,只有狠抓设计、加工、使用等各个环节,才能不断提高产品的可靠性。
3.1精心设计奠定了产品的可靠性
设计是可靠性的基础。设计人员在设计时除保证连接器的电性能外,还应该同时考虑产品的可靠性,因为设计的缺陷对连接器的可靠性常常是带有批次性的,只有及时改进设计缺陷,产品可靠性才能得到不断提高。例:有一次在设计压接电缆连接器时,由于缺乏经验,设计的压接套筒与接头尾部间隙偏大,因而产生压接不足,抗拉力低,电缆组件使用了一段时间发现拉脱现象,这时立即分析原因,暂停装配,及时调整间隙,重新设计、加工了新套筒。改进后的套筒再未发生拉脱现象,从而提高电缆组件的可靠性。因此,一个好设计人员,应善于及时研究和解决可靠性设计缺陷和薄弱环节,把不可靠因素消灭在萌芽状态。
3.2精心加工保证了产品的可靠性
诚然,设计是可靠性的基础,那么精心加工同样是非常重要的环节,因为如果加工不当,即使有了一个好的设计图,同样得不到高性能、高可靠的产品。
例如:几年前曾经加工过一小批SMA电缆连接器的插针,图纸规定的尺寸为φ0.930-0.02结果误加工成φ0.9800.02,检验时又漏检,个别用户装成电缆组件后与被连的SMA插座联接后把插针弄坏了找来,最后检验发现插针尺寸加大了。这样的差错虽偶有出现,但说明加工中加强对工艺缺陷的预防、检测是何等的重要。对防止失效、提高连接器可靠性有着重要的意义。
3.3正确使用才能保持产品的可靠性
任何一个产品都有一个规定的寿命或额定的承载能力,即使
- 射频同轴连接器选择指南(10-06)
- 现代射频同轴连接器优化设计技术(01-11)
- SL16系列射频同轴连接器参数介绍(06-16)
- 一种高兼容性快速锁紧射频同轴连接器(10-26)
- 如何降低射频同轴连接器电压驻波比(02-14)
- 分米波法兰连接器的结构设计特点及方法(01-16)