示波器的FFT功能使用指南
显示FFT相位和幅值。这两个成对的输出格式(实数/虚数和幅值/相位)构成了完整的FFT。计算反向FFT时要求实数/虚数分量,在机械应用(如振动测量)中它们更常用,幅度/相位格式在电气测量中也常见到。图4显示了一个方波的功率谱幅值/相位和实数/虚数分量的例子。
图4:一个方波的FFT的功率谱幅值、相位、实数和虚数分量
相位谱使用垂直单位度,实数和虚数格式使用与源通道相同的垂直单位,在本例中是mV。对于类似这种方波的周期性波形,相位、实数和虚数格式只在基频和谐波频率点有有效值。
加权函数
示波器中实现的FFT具有有限的记录长度,这将在频谱显示中引起问题,原因是获取的波形的起点和终点的连续性问题。图5显示了起点和终点是如何影响频谱形状的。
图5:起点和终点的边界条件将影响信号经FFT处理之后的频谱形状
图5的上面两个波形中,所采集的信号频率是采样率的因数,获取的波形中存在整数的周期性,起点和终点处于相同的幅度,结果生成的频谱非常窄。在下面两个波形中,所采集的信号的频率不是采样速率的因数,起点和终点位于不同的电平。
这将导致时间记录的不连续性。生成的频谱变得更宽,峰值电平更低,原因是频谱扩展(也称为泄漏),即采集信号的能量被扩展到了相邻频率单元。更低的、与频率有关的峰值响应被称为"尖桩篱栅"效率或扇形损耗。加权(开窗)有助于最大限度地减小这些效应。
加权是将获取的波形乘以一个窗口函数,通过调制将端点变为零。窗口函数的形状决定了频谱响应,包括频谱线的形状和任何边带的幅度。常用加权函数的特征如表1所示。
表1 常见FFT加权(窗口)函数的特征
这张表对每个窗口最大限度减小旁瓣和扇形损耗的能力进行了总结。图6显示了在相同输入信号条件下窗口函数对谱线的影响。
图6:这个屏幕图像比较了在相同输入信号条件下不同加权函数对频谱响应的影响
谱线变宽可以减小扇形损耗,这是有意义的,因为相邻单元中的信号会在更高幅度点重合,以获得更宽的响应,并最大限度地减小扇形损耗。
窗口函数的选择取决于具体需求。如果你要测量比采集窗口小的瞬变,那么不要使用窗口函数,因为频谱峰值的幅度将根据采集窗口中的瞬态位置发生改变。在这种情况下,矩形窗口(无加权)是最好的选择。越窄的窗口响应可以提供越好的频率分辨率和更宽的响应——Blackman Harris或平顶窗口——产生更为精确的幅度测量结果。如果你要两者兼顾,一个好的折衷方案是Von Hann或Hamming窗口。
频域平均
平均操作可以用来改善采集信号的信噪比,并且通常要求多次采集。平均可以在时域完成,也可以在频域完成。与触发事件不同步的信号,比如噪声,将与平均次数呈正比衰减。图7是频域平均的一个例子。
图7:频域平均可以改善信噪比,并提供更大的动态测量范围。有噪信号FFT在经过许多次采集的平均后可以消除噪声,从而看到更低电平的谐波
频域中的平均是将多次采集的每个频率单元的内容累加起来然后除以采集次数实现的。那些与采集不同步的信号将被平均为零,而同步信号则连续累加。在图7中,有噪信号的FFT包含频谱被扩展的噪声分量,这些噪声隐藏了低电平的谐波。平均有助于提高信噪比,减少噪声,使得谐波分量可见。以同样的方式,那些与采集不同步的信号幅度也将降低。
设置实例
考虑需要在一个4GHz带宽的示波器上设置FFT,其频带宽度是10MHz,中心频率是2.48GHz,分辨率带宽为10kHz,用于分析一个连续的周期性信号。根据上述讨论,只需简单地设置示波器的时间/格参数就能完成分辨率带宽的设置。10kHz的分辨率带宽要求采集或捕获时间为100μs,或者时间/格参数设为10μs /格。还应设置示波器的垂直灵敏度(电压/格),以便信号占据至少90%的输入范围,尽量提高其动态范围。
FFT的频带宽度由采样率控制。由于这个宽度必须包含2.48GHz信号频率,因此必须大于这个频率的两倍。5GHz或更高的频率应该没问题。示波器的最大采样率是20 GS/s。利用示波器的时基设置来调整采集内存长度,可以获得想要的采样率。在本例使用的示波器中,将内存长度设为1MS,可以实现10GS/s的采样率和100μs的采集时间。详细的FFT设置见图8。
图8:适合本例使用的主要FFT参数设置
数学函数F1的FFT栏包含一些主要的FFT设置,并被设置为显示功率谱。由于信号被显示为连续的,因此加权函数类型可以选择Von Hann窗口,它可以在频率分辨率和幅度平坦度之间
- 使用示波器进行EMI共模电流进行测量(12-22)
- 巧用示波器频域方法分析电源噪声(04-23)
- 在FPGA上优化实现复数浮点计算(06-02)
- 使用FFT进行谐波分析(08-09)
- 矢量分析仪原理详解(01-22)
- 扩频信号基于FFT码捕获的计算量分析(12-25)