射频功率放大器的效率如何提升?
输入信号被分成具有恒定幅度和相位变化的两个信号。振幅依RF功率器件设定,功率耦合电路重构源信号波形。先前,当源信号重构时,耦合精度损失需要确定相位差,阻止了该技术的商用。富士通使用的耦合器具有更短的信号路径,降低了损耗并增大了带宽。
3、恩智浦极具前景的开发
Outphasing 机制没有负载调制效果的一个变体被称为非线性概念的线性放大(LINC),采用一个分离耦合器和放大级驱动到饱和,并能有效地提高线性度和峰值效率。但 LINC放大器效率相对较低,因为每个放大器工作在一个恒定功率上,即使低RF输出电平时也如此。Chireix修正了这一点,通过结合 outphasing和一个非分离耦合器和负载调制,从而提升了平均效率。恩智浦半导体公司做了进一步提升,用outphasing控制两个开关模式的 RF放大器,使它们适应高波峰因子信号。该公司正在将Chireixoutphasing技术与GaN HEMT开关式E类放大器结合起来(图3)。
图3:简化后的Chireix 异相功率放大器结构框图。
恩智浦开发并获得专利的新驱动器技术通过控制相位关系,使放大器在约25%的带宽上达到高效率。这引发了一种新架构,通过结合E类放大器和负载调制以在退出饱和时保持放大器的高效率,这使得它们能够适应各种复杂波形。恩智浦为基于GaN器件的E级RF功率放大器提供了参考设计,并附带了Chireix相关的技术资料。
4、包络跟踪
另一个放大器设计人员关注的重点技术是包络跟踪,这种技术中,施加到功率放大器的电压被连续地调整,以确保它工作在峰值区域,从而使功率最大。相对于典型功率放大器设计中DC-DC转换器提供的固定电压,包络跟踪电源以一个高带宽、低噪声波形调制连接到该放大器的电源,该波形则被同步到瞬时包络信号。
在CMOS RF功率器件中使用包络跟踪技术具备相当大的吸引力。Nujira多年来一直在开发这种技术。他们已经表明,该技术能够克服CMOS RF放大器应用中因非线性导致的缺点。CMOS功率放大器一直被诟病是目前高PAR调制技术的一个糟糕选择,因为它们固有的线性度较差,这就要求它们必须回退以减小失真。当CMOS放大器在较高的RF功率电平工作时,会出现削波和失真。
然而,Nujira在其专有的包络跟踪技术中结合了其专利ISOGAIN线性化技术来消除线性问题,而无需使用DPD。使用这种技术的设备达到了高效率目标,已经在其它方面实现了与GaAs同样的性能。所有研究CMOS放大器的一个巨大好处是,CMOS器件在整个电子行业中普遍存在,有很多代工厂家支撑,因此相对便宜。因为它基于硅,也可以在功率放大器芯片上直接集成控制和偏置电路。
5、其他完全不同的方法
另一个放大器技术由Eta Devices倡导,这是从美国麻省理工学院剥离出来的公司,由两位电气工程教授Joel Dawson 和David Perreault以及爱立信和华为的一位前功放研究员共同创建。其不对称多级Outphasing(AMO)技术由MIT开发,该公司是由ADI公司联合创始人Ray Stata和他的风险投资公司Stata Venture Partners联合投资。
该公司的首要目标是新兴市场,包括燃料方面每年耗资150亿美元的多达64万台的柴油发电机功率基站,其次是智能手机市场。今年二月,Eta Devices在西班牙巴塞罗那举办的移动通信世界大会先进LTE部分上展示了其Eta5设备,该设备的发射信道超过80-MHz。
Eta Devices大胆宣称,它的ETAdvanced(高级包络跟踪)技术,预计可减少50%的基站能源成本。还宣称,它可以将智能手机电池续航时间提升一倍。前提是,所述放大器的RF功率晶体管在待机模式和发射模式时同时消耗功耗,而提升效率的唯一途径是将待机功率降低到最低可能水平。
在低功耗待机模式和高功率输出之间进行转换,会导致失真现象,现有的系统为持续检测这一状况,需要维持高待机功率水平,带来的代价是高功耗。Eta Devices的做法是,通过每秒高达2000万次的采样,选择出晶体管两端消耗最低功耗的电压。
另一个问题是,该公司解释说LTE Advanced 以及100 MHz带宽要求将会为RF功率放大器带来巨大需求。仅仅通过包络跟踪无法适应这种情况,因为它不能支持比40Mhz更宽的信道。据该公司的说法,ETAdvanced支持高达160 MHz的信道,因此它可以同时满足高级LTE和802.11ac标准的Wi-Fi。使用其技术的基站可以非常小,该公司声称,它已经开发出首个平均效率大于70%的LTE发射机。
6、总结
如果完全描述目前为提升RF功率效率所做的工作,可以写一大本书。这些内容不仅局限于本文所讨论的范围,也包括不同类放大器的使用以及配套技术,这些技术的结合可以产生有意义的结果。不管取得的进步有多大,可以肯定的是,只要更高数据速率需求依然存在,对更高效率的探索也必将继续下去。
射频功率放大器 效率 Doherty放大器 相关文章:
- 特测收购IFI公司拓展其射频功率放大器领域(01-29)
- 利用SuPA给手持设备射频功率放大器供电 (01-02)
- 安捷伦推出RF PA制造测试参考解决方案(05-12)
- 微波混响暗室的应用设计(03-22)
- 射频能量是什么?它能用于那些领域?(12-28)
- 射频放大器终篇:提高功率放大器效率(06-08)