单片机控制的电池管理实现了成功的互联网
U的能力可以节省一个显著量运行功率的由于CPU,操作时,采用多数所述MCU功率预算。每个低功率模式的更详细的说明在下面的部分中提供。
飞思卡尔MCF51QE128低功耗模式的图像

图2:飞思卡尔MCF51QE128低功耗模式。 (飞思卡尔提供)
运行模式 - CPU时钟可以全速运行,内部供应是充分的监管。
LPrun模式 - CPU和外设时钟被限制为250 kHz的CPU时钟和125 kHz的总线时钟最大的内部供应处于软监管。
等待模式 - CPU关闭以节省电能;外设时钟正常运行,内部稳压器正常工作。
LPwait模式 - CPU关闭以节省电能;外设时钟是在低速(125 kHz的最大值)和内部稳压器在宽松的监管模式下运行运行。
停止模式 - 系统(CPU和外设)时钟停止。
STOP4 - 所有的内部电路供电(全调节模式)和内部时钟源仍处于最高频率最快的恢复。
停止3 - 所有的内部电路松散的监管和时钟源的最低值(125 kHz的最大值),提供用电和恢复速度之间的良好平衡。
停止2 - 内部电路的部分电源关闭; RAM内容被保留。在低功耗模式,此设备。需要复位从停止2模式恢复。
在运行,等待和停止模式普遍存在于现代MCU和非常功耗节能设计提供了依据。尤其是,应用程序,只定期使用主CPU - 也许只进行平均大量传感器读数或管理接收到的数据缓冲器,当缓冲器接近充满 - 可以通过关闭CPU和让智能节省功率的戏剧性量外围设备处理尽可能多的算法成为可能。等待和停止之间的区别通常体现在响应时间,因为它通常需要更长的时间来块从低功耗状态通电(即减少一个典型的停止模式下,静态电流),而不是删除一个时钟门控信号一个块(即只减少动态电流在典型等待模式)。
可以在MCF51QE128的LPrun和LPwait模式提供了另一种技术,通过运行在CPU和/或外围设备,以降低功耗低得多的频率比正常。当操作不容易被周期性地执行,而且必须连续运行,而不必在高速运行时非常有用。例如,通信数据包可能以高速在正常运行模式中接收,但LPrun可以用来处理数据。这是特别有用的,如果处理时间是依赖于数据的,并且不能经由周期性定时器中断很容易地进行管理。一旦数据被处理时,LPwait状态可以进入等待,直到下一数据分组需要被接收。
结合使用不同的电源域和低功耗模式允许多种有效实现。寻找各种时钟频率,低功耗模式和状态转换的最佳组合可以是一个艰巨的运动,通常需要事先对具体实施工作要做,或者你可能会发现使用已选定的设备并影响项目进度不能满足你的操作要求显著。理想情况下,你会希望能够模拟各种运行功率水平,估计电池寿命为目标的应用程序。幸运的是(或者也许是因为他们明白这一点的难度)的MCU厂商都创造了一些评估工具,我们可以用它来解决这个难题。
软件工具帮助评估电力需求和电池寿命
其中一个使用的工具越容易从Microchip XLP电池寿命估算(BLE)1。这个免费下载的工具,与任何XLP单片机工程估算功耗在整个应用程序。它也可以被用于获取的功耗为您的XLP MCU设计内键例程详细估计。下面的图3显示了BLE的图形用户界面(GUI)。您只需选择您的设备,你的电压和温度,然后你的目标电池(步骤1至3的GUI)。然后,您可以指定关键业务应用程序,定义工作频率,该函数使用模式下,时间的功能被激活和各种模块(如ADC,UART,定时器等)功能时有效。 (在下面的例子中有一个在运行模式在16兆赫,两种休眠模式功能并在1 MHz的运行模式功能的功能)的软件自动确定在每个功能所使用的电流,然后报告所估计的电池寿命该设计。在这个例子中,电池的寿命估计在不到200天。一个完整的文本文件,报告可以生成保存程序设置和结果。一个例子示于图3的底部。
将Microchip XLP电池寿命估算程序映像

图3:Microchip的XLP电池寿命估算程序 - GUI和报告。 (Microchip的提供)
使用的电池寿命估算程序可以很容易地找出关键程序和您的应用程序使用最多的功率。这使您可以调整设计,同时尝试不同的设备,以找到合适的实现。这样做之前,详细的编码和电路板设计可以节省你浪费显著努力探索的选项,将无法实现,你需要一个成功的设计的电源效率。
一旦你有信心,你的选择,你可以再取使用评估套件,如Microchip的PIC24F评估和演示工具包的下一个步骤。通常,这些套件包括了丰富的示例代码,参考设计和丰富的文档,可以很容易编写你的关键程序和测量实际的功率水平,你会在全面实施得到。
新的低功耗技术的高效
- FPGA的DSP性能揭秘(06-16)
- 基于单片机通用引脚的软件UART设计(10-16)
- 分时操作系统思想在单片机中的具体应用 (10-30)
- 基于AT89C51+DSP的双CPU伺服运动控制器的研究(05-26)
- 关于RTX51 TINY的分析与探讨(05-30)
- 基于MC9S12DGl28单片机的智能寻迹车设计(04-03)
