微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 使用LabVIEW与NI FlexRIO实现基于FPGA的单原子反馈控制

使用LabVIEW与NI FlexRIO实现基于FPGA的单原子反馈控制

时间:02-27 来源:互联网 点击:

的PXI Express总线速度,以及更快更大的DDR2内存。

  请注意,尽管使用了专为处理高达200 Mbit/s数据率的NI 6581适配器模块的DDCA口,只要计数率不超过100 MHz,以1ns的分辨率探测上升沿仍然是可行的。适当的运行模式已经通过使用安捷伦的81150A 脉冲信号发生器的大量测试进行了验证。

逐个光子对单个原子的反馈

FPGA要执行的主要任务是实时对原子轨迹进行有效控制。我们使用NIFlexRIOFPGA模块来控制单个原子的运动,它被俘获于光腔内部的光学偶极阱。只需要通过探测一些光子,我们就能获得有关阱中原子实际位置的充足信息,从而操控它的运动。在这里,FPGA模块被用于记录光子的到达时间,评估原子的轨迹,并基于这些信息改变原子的俘获势能。当探测到单个光子时,一个数字化的电子脉冲被光电探测器发射出来,到达时间被FPGA以1 ns的分辨率在多个通路记录。基于光子被探测到的计数率变化,FPGA判断原子是否正向俘获势能的中心移动,或是在势阱的外部,来决定减少或增加俘获势能。

NIFlexRIO模块将被原子散射的光子的到达时间逐个分类并归栈。典型的归栈时间间隔一般为几百万分之一秒,它涉及到曝光时间,每隔几纳秒需要校正一下。散射光子率的变化通过比较当前堆栈与之前堆栈来评估,它被延时,延时时间等于曝光时间。延时使用FIFOs实现。在我们的实验中,光子通量的减少表明原子正向光腔的中部移动,而增加预示着原子正向外部移动。因为被俘获的原子对多种不同的力都非常敏感,它的运动在规则振动的同时,又叠加了一些无序的运动。这种机制使得原子轨迹在时间尺度内的不可预测性比它的振动频率更大,其振动频率一般约为5 kHz。一旦原子积累的动能超过它所处势阱的深度,它就会丢失。原子呆在势阱的时间被认为是存储时间。此外,对于一个被俘获原子来说,散射光子的通量一般仅为每10 μs一个光子的量级,从而使执行有效的反馈方案非常困难,这是因为有用的信息太少。一种可行的方案需要数字化地在高低值之间改变阱的势垒深度,取决于是否当前时间间隔内的撞击数量超过先前一定数值。就如同它看起来那么简单,与没有信号反馈回来的情况相比,它在原子的平均存储时间方面增加了30倍。存储时间平均1秒,最高超过7秒的结果已经实现,从而使这项技术完全可以与激光冷却方案相比,它要求更为复杂的光学结构。目前更加精密的反馈策略正在研究中。

监测

  除了存储有关发射光子流的信息并反馈到系统中,将重要的信息显示给实验者也至关重要。对于最初的方案来说,这一点尤其重要。为实现这一目的,我们将一个快速数字模拟转换器(DAC)与两个视频图形阵列(VGA)连接器集成到FPGA。

DAC是AD(Analog Devices)公司的TxDAC (AD9744),它能提供210 Ms/s的采样率,同时具有14位的分辨率。在当前设计下,它运行在125 MHz的时钟频率下,并输出一个与探测到的光子数目成正比的电压。DAC的数据与时钟引脚被连接到NI 6581;22 Ω的电阻被串联以减少数字DAC输入的反射。模块的其余引脚被用于同VGA显示器交互。基本上每个VGA连接器含有三根信号线,以及两根数据线。信号线传输红,绿,蓝颜色信息。VGA的说明书要求它们连接75 Ω的电阻,并且承受0 V (黑色) 到 0.7 V (全部彩色亮度)的电压。同步由两个高阻TTL数据线实现,规定了水平与垂直的回描周期。如果只有8个颜色值(3位颜色深度)是需要的,那经由270 Ω电阻连接VGA连接器信号引脚与NI 6581适配器模块(采用3.3 V的配置模式)就足够了。数据线串联一个22 Ω的电阻。我们选择将显示器分为两部分:一部分显示基于文本的信息,另一部分是图像信息。对于文本模式来说,一套8乘以16像素的黑/白字体被载入到FPGA的一个内分区块RAMs中。另外一个区块RAM存储了符号编码。图形部分显示了探测器发射的趋势图或反馈算法的计算;这些图表也存储于内分区块RAM。运行于108 MHz像素时钟的,1280乘以1024像素的显示模式可以很容易地实现。

总结

使用NIFlexRIO,我们可以创建自己的高性能定制硬件。时域数字转换器是非常强大以及功能广泛的工具,可用于科学研究与工业生产的很多不同领域,它所能提供的优势超过了很多商业上可用的产品。FPGAs的计算能力进一步帮助我们从硬件上来实现时间严格任务的实时处理,从而使对较小系统执行反馈控制成为可能,甚至于单个原子与单个光子的相互作用。

使用LabVIEWFPGA,我们可以快速地开发FPGA编码,这是因为它的高度概括性,同时适当地集成了VHDL IP。此外,使用PXI平台让我们可以在系统中利用跟其它PXI仪器的触发与同步,从而使我们可以将定

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top