微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 基于雷达原理的脉冲微波共焦成像检测乳腺癌

基于雷达原理的脉冲微波共焦成像检测乳腺癌

时间:12-29 来源:mwrf 点击:

向异性的,这些都使得反演结果不唯一,不能确保成像结果与实际完全吻合,这在一定程度上限制了微波成像的应用。

但随着电磁场数值算法研究的进展,特别是计算机计算能力的迅猛提高,微波成像技术用于人体检测变得越来越具有吸引力,其中以用于女性乳腺癌检测的研究最为活跃,取得的成果和进展也最为显著,基于雷达原理的脉冲微波共焦成像(confocal microwave imaging, CMI)就被认为是一种很有发展前景的主动式微波成像技术。

3.2 脉冲微波共焦成像检测乳腺癌

脉冲微波共焦成像技术检测乳腺癌是基于雷达原理,它类似于机/星载SAR成像或探地雷达的工作原理。不同于普通的逆散射成像,该方法避免了复杂的逆散射计算问题。

脉冲微波共焦成像技术用于乳腺癌的检测最早是由美国Wisconsin-Madison大学的Hagness提出[7],加拿大自然科学与工程研究委员会的Elise C. Fear等人也相继进行了理论和实验研究并取得了一系列的研究成果。

脉冲微波共焦成像系统检测乳腺癌的基本工作过程是:系统首先用天线发射超宽带脉冲对成像目标乳房进行照射,同一天线用于接收乳房的反射波,反射波信号采用矢量网络分析仪记录,由于矢量网络分析仪记录的是频域信号,需要通过离散反傅立叶变换得到反射波的时域形式。在一个位置完成该过程后,将天线移动到另一个位置重复上述过程。当所有位置都测试完毕后,根据成像聚焦点的不同,对所有位置接收到的反射波进行时移相加,最后得到目标乳房组织的反射波相对灰度图像。虽然这种方法不能直接得到乳房的介电参数分布,但它能区分出由于介电参数异常增大而使反射波增强的区域,起到检测乳腺恶性肿瘤的作用。

Hagness等人开展微波共焦成像检测乳腺癌的研究开始于1998年,最开始采用的是计算机理论仿真的方式。仿真天线扫描方式是采用平面式,探测深度约为5 cm,之所以采用这种扫描模式是基于患者仰面躺着接受检测的假设,结形天线加载后直接放在乳房上面进行检测,天线与乳房之间没有空间距离,从而保证和皮肤间的阻抗匹配,减小皮肤的反射。

而Fear等人则在2005年建立了一套微波共焦成像检测乳腺癌的实验验证系统,该系统被称之为TSAR(Tissue Sensing Adaptive Radar,TSAR)[8-10]。系统由液体容器、浸泡用液体、地层、天线和乳房模型构成。液体容器的上方是用作地层的金属盖板,金属盖板上留有几个洞,天线和乳房、肿瘤模型通过这些洞放入容器盛放的液体中,液体的介电常数接近正常的乳房组织,这样可以减少正常乳房组织对入射波的反射。整个容器除了上层盖板因用作地层而采用金属材料外,其它地方采用的都是介质材料,这是为了尽量避免电磁波被容器壁反射。天线采用的是阻抗加载Wu—King偶极子天线,长度为10.8 mm。而乳房模型则采用的是圆柱体模型,圆柱体高为30 cm,截面直径为10 cm,圆柱体内放有一个肿瘤模型。整个仿真模型材料分为四种:液体、"皮肤"、"脂肪","肿瘤",四种材料的介电参数见表1。表1 实验系统用到的各种材料的介电参数 实验系统通过旋转乳房模型,每次旋转22.5°或40°,实现天线对乳房模型的扫描。

天线回波数据采集采用的是将安捷伦的8719ES矢量网络分析仪通过50 Ω同轴线连接到天线上实现的,频率采样点为1601个,采样16次的样本进行平均,采样频率范围为1~10 GHz,对采集到的频域数据进行离散反傅立叶变换即得到信号回波的时域波形。

通过诸多研究者一段时间的努力,用于检测乳腺癌的脉冲微波共焦成像系统的基本框架已经基本成型,下面分析系统的各技术要素及其近期的研究成果。

首先,超宽带信号形式的选择主要有两点矛盾:分辨率和信号衰减的矛盾。信号的带宽越宽,则系统的距离分辨率越高,但同时随着信号频率的升高,其衰减就越厉害,探测深度因而受到影响,因此,对信号的形式选择应该综合考虑这两个因素。

目前被广泛采用的超宽带信号源形式为微分高斯脉冲,其表达式为:
V=V0(t-t0)exp(-(t-t0)2τ2)
其中τ约等于50~100 ps,t0=4τ,这种形式的信号的典型探测深度为3~4 cm,最大探测深度为5 cm,这是考虑到几乎50%的肿瘤位置处于深度小于2.5 cm位置,距离分辨率约为1 cm,因此,这种脉冲形式兼顾了分辨率与探测深度两者的要求。

对天线的选择,目前采用的方案是加载蝶型天线或Wu-King偶极子天线等,Fear等人研制了多种超宽带天线[11-13],并比较了其性能指标以及对成像效果的影响。

波束形成方式有天线阵列波束成形、单天线空间扫描波束成形等方法,其中后者被更多地采用,主要原因是单天线扫描的方法简单易

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top