八大角度让你读懂指纹识别
图像灰度均衡,以及对图像进行归一化。在这些完成之后,还需要对图像按照一定的算法和要求进行分割。即把指纹图像中质量很差,后期无法处理的图像区域与有效区域进行区分,使后期处理集中到有效区域上,提供特征提取精度,减少处理时间。目前,常用的分割方法有以下几种:
(1)基于方向图的分割方法:
根据图像上纹理的方向,区分指纹区域和背景区域,然后按照不同的区域分割。如果指纹的纹理线不连续、图像的灰度 单一等方向难以正确估计或者有些区域变化剧烈,则此方法不能进行有效的分割。
(2)基于图像的局部灰度均值、局部标准差和局部一致性的分割方法:
利用指纹图像局部区域的灰度均值、标准差和一致性作为特征,再采用线性分类来分割指纹图像。局部图像的一致性显示了局部图像的纹理走向,但是这些特征对于模糊区域无法做出有效的表示。
(3)多级分割法:
就是将指纹图像进行多级分割,逐级减少分割的范围。例如:第一级分割图像的背景区域,第二级在前景区域中分割出模糊区域,第三级从模糊区域中分割出不可恢复区域。
(4)动态阈值分割法:
根据各个子块的局部灰度对比度自动调节阈值,基于像素的方差进行分割。该方法简单、快捷、分割效果好。具体为:将图像划分为不重叠的各个子块;计算每个子块的平均灰度和灰度方差;计算方差最大值与最小值之间的差值;定义动态阈值,并分割图像;平滑操作,去除孤立块。
五、指纹图像的增强
指纹图像增强就是将模糊的指纹纹理改变得更加清晰,例如:将断裂的指纹纹线进行连接,把连接的纹线区分开,而且在这个过程中还需要保持原有的指纹图像结构,使图像更加易于提取特征信息。目前,有以下几种指纹图像增强方法:
(1)从脊线方向上采用平滑算子而在垂直于脊线的方向使用增强算子的图像增强算法。这种算法在理论上是十分正确的,但是要估计出脊线宽度以及滤波的参数却比较困难。如果参数估计有误,则会使得脊线产生污染,并且对于脊线上有折痕的指纹会产生偏差。
(2)基于Gabor 滤波器的指纹图像增强算法。此算法是在使用上一方法之前先进行滤波。将指纹图像分成不同的区域,有效削弱垂直于主导纹线方向的噪声,提高方向信息提取的可靠性。
(3)傅立叶增强后滤波的方法。基于时间和处理效果的考虑,先采用傅立叶变换来增强指纹图像,然后使用滤波器来修补指纹图像的纹线。具体为:首先,多级分割出可恢复区域块,将该块像素变为复数形式;利用离散傅立叶变换,滤掉频率过高或过低的频带噪点;利用方向滤波器消除指纹的断裂和叉连。
六、指纹图像的提取
在细化图像的基础上提取
首先,需要对指纹图像进行细化处理,将指纹纹线变细,然后通过分析纹线上每一个像素点的8 个方向上的连接点来判定该像素点的类型、位置,并且通过分析该像素点所连接的纹线段来判断点位的方向,进而提取出特征点。这个方法存在的优点是原理比较简单而且容易实现;缺点是需要对大量的像素点进行细化处理,时间较慢,当图像质量不高时,细化处理会产生很多杂质项。
从原始灰度图像上直接提取
利用指纹方向图,在灰度图像上跟踪指纹的纹线,每跟踪一定的长度,根据图像的投影极值来确定纹线的位置,当遇到端点和分叉点时无法投影,跟踪过程自动终止。这个方法的优点是具有较高的效率和精度;缺 点是实现起来比较复杂,需要大量的运算,而且当图像质量不高时,求出的方向图可能不可靠,导致跟踪出的纹线出现偏差。
七、指纹图像的匹配
指纹图像匹配是指用当前指纹图像提取出的指纹特征与事先预存在指纹数据库中的特征进行比对,从而判断这两个指纹特征是否一致,即是否来源于同一根手指。这个阶段为了避免一些因素的干扰,例如变形、虚假特征点、特征点位置误差等,需要设计一个准确有效的匹配算法。目前,有以下几种方法:
(1)基于点模式匹配算法。
目前大多数算法都是基于细节点的特征来进行匹配。该匹配分为以下几种类型:基于匹配的对象可以分为1 对1 进行匹配和1 对多进行匹配;基于匹配的适应程度可以分为弹性的匹配和刚性的匹配。
(2)基于纹理模式匹配算法。
首先将指纹图像分割出来的有效区域进行网格化,然后利用Gbaor 滤波从像素点的8 个不同的方向处理该纹线区域,得到指纹的全局信息和局部信息,并转化成一个特征信息,最后比较当前指纹图像和数据库中的图像相应特征信息的差异。该算法可以解决质量较差且区域细节点难以提取的图像匹配的困难。但是这种方法需要对每个像素点进行大量的运算,而且无法处理形变比较大的指纹图像的匹配。
- 基于DSP CCS 2.2实现指纹识别预处理系统(07-28)
- 基于FPS200传感器和DSP的指纹识别系统(01-12)
- 基于嵌入式Linux平台的指纹门禁系统(01-20)
- 基于DSP CCS2.2实现指纹识别预处理系统设计(06-10)
- 基于DSP CCS2.2实现指纹识别预处理系统设计方案(06-17)
- 基于DSP的指纹识别系统设计方案(07-03)