一种基于ARM及FPGA的新型智能化航迹仪的设计
向的分频值、脉冲个数、运行方向,以及开始/终止运行、抬落笔、报警等),经FPGA芯片XC2S50处理后,转化为相应频率的脉冲信号;再经输出驱动芯片SN74LS244,通过接口HJY传递给X、Y向的步进电机驱动器。运行程序通过JTAG口或DOWNLOAD口烧写入配置芯片18V01中。
2.4 步进电机及其驱动器
对于航迹仪系统,标绘精度是极其重要的一项技术指标,而电机及传动机构的精度则对其产生直接影响。
航迹仪控制系统对快速性及定位精度均有很高的要求。考虑到系统是针对数字量及位移的控制系统,因此选用步进电机作为其执行元件。步进电机是一种将电脉冲转换成相应角位移的电机元件,当外加一个脉冲信号于电机的控制装置时,其转轴就转过一个固定的角度(步距角),即前进了一步。
系统要求绘笔绘制大量细小折线,这就要求电机工作在低频区且需要频繁地执行起动、停止、调速等操作。因此步进电机极易出现低频振荡,产生工作噪音,影响绘笔的稳定性及标绘精度。因此,改进方案采用了先进的细分驱动器,大大降低了低频振荡。
本设计选用RORZE公司生产的5相混合式步进电机M56853D及相应的5相细分步步进电机驱动器RD-0534M。
步进电机M56853D各技术参数:
最大静转矩Mk=8.0kg·cm;电流I=3.5A/相;转子转动惯量Jr=0.240g·cm·S2;步距角(整步时)θb== 0.72°;容许径向负载10.5kg;容许轴向负载1.5kg;转子齿数Zr=100。
细分驱动器RD-0534M各技术参数:
改进后航迹仪系统电机步距角变为原系统的1/80,步距分辨率及控制脉冲频率均得到提高。提高后的控制脉冲频率大大超过了自由振动频率f0,从而避免了系统的低频振荡。
2.5 电磁感应式数字化板
传统的航迹仪为开环系统,无检测反馈装置。改进设计中增添了数字化板。这一反馈模块,构成了一套完整的闭环控制系统,增强了稳定性,降低了误差。
数字化板的工作原理:在标绘仪的绘图平板上布上导线形成格栅,把电磁发射线圈安装到绘笔上,此时把线圈圆心和绘笔圆心标定在同一直线上;绘笔在平板上绘图,而线圈不断发射磁场脉冲,导线切割磁场产生感应电流,通过接收电路和信号处理电路得到绘笔在绘图平台上的相对位置(绘笔位置)。把电磁感应定位得到的位置作为绘笔当前真实位置,此位置通过UART口反馈给S3C44B0X控制器。目标位置与该位置进行比较,得到需要的位置差量,计算后作出响应的位置补偿调整。数字化板工作原理如图3所示。
3 航迹仪系统的软件设计
3.1 S3C44B0X主板部分的软件设计
操作系统是控制和管理计算机软硬件资源、合理组织计算机工作流程、方便用户的程序集合。航迹仪功能的完成,很大程度上取决于操作系统软件平台的选择和应用程序的编制。在航迹仪的设计中,软件平台选用基于Tonardo集成开发环境的实时操作系统VxWorks,应用程序则采用VxWorks支持的标准C语言编制。
主板软件系统主要由主程序、命令解释部分、底层部分组成。其中,主程序到命令解释部分的调用通过函数shibie( )进行;命令解释部分到底层部分的调用通过函数zxcb( )进行。
3.1.1 主程序
主程序主要对综导台命令和触摸屏命令进行管理、调度。程序执行过程中查询随机命令数和推位命令数这两个变量。变量小于等于零时,没有综导台命令,程序查询触摸屏有无按下及键值,执行响应操作。当两个变量大于零,说明有了综导台命令,就会自动进入跟踪状态。在跟踪状态,不响应触摸屏命令,控制程序只查询有无随机命令及推位命令,转入响应的命令解释程序。
3.1.2 命令解释部分
命令解释部分主要功能:通过函数shibie( )对每一条命令进行识别及格式检查。对于随机命令和推位命令,每从CAN总线上接收一条命令,相应的命令条数加1。每执行完一条,相应的命令条数减1,同时指向下一条。只要这两个变量不为零,就说明有综导台命令未处理。通过检查随机命令数和推位命令数,即可按先后次序顺次执行所有命令。
本部分中还包括海图坐标转换程序,其主要功能:主板接收装海图命令的同时,会读取CAN总线上由综导台发送的海图信息,包括海图类型(墨卡托或高斯海图)、大小、比例等。程序根据这些信息,将海图上的经纬度值折算成XY轴坐标,以便于底层的直线差补程序将XY坐标量转换成步进电机的走步脉冲数。
- 什么是X系列(10-18)
- 基于CS5463电能测量电路进行高速功率计算(01-21)
- 使用NI LabVIEW和PXI进行噪声源特征识别(06-14)
- 基于虚拟仪器技术的步进电机检测系统(11-07)
- 测试液晶电视亮度频道特性(01-24)
- 把你看透-深入浅出接触DVI接口技术(04-30)