微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 微波近场成像检测乳腺癌及其微波热疗

微波近场成像检测乳腺癌及其微波热疗

时间:12-29 来源:mwrf 点击:

将为完善该系统铺平道路。但也应看到,乳腺癌的微波检测与微波热疗还有很多工作要做,比如在美国Dartmouth大学和加拿大Victoria大学的研究中必须将患者的乳房浸在匹配液体中,这必将给患者带来不便;有关的医学专家也对此提出疑问:这样的一套系统,每次检查完患者后都需要对匹配液体进行更换,对病床进行消毒,需要很长的附加时间,增加工作量,医院和病人都很难接受,只能用于实验室开展研究工作,不适合乳腺癌普查;WisconsinMadison大学的研究中使用的天线较大,不适合临床应用;文献[31]、[32]也需要匹配液体,且现阶段也只停留在实验室内能够完成。

从上面的分析可以看到,单纯的红外成像检测乳腺癌有其弊端,一方面成像质量很难保证,另一方面受医生的主观影响较大。单纯的用微波对乳腺癌进行检测和热疗的设备复杂,难于临床实现,难于完成乳腺癌的普查任务。看来,综合的方法可能是具有潜力的一种方法,除微波和超声波的结合外,将微波和红外结合也不失为一种好方法。可以通过适当的天线或天线阵发射一定剂量的微波直接照射乳房,正常乳房组织和肿瘤组织在电磁波的照射下,吸收的程度不同,从而温升不同。肿瘤组织含水高,吸收的能量多于正常的乳房组织,相对温升高。在此基础上进行红外测量,得到的图像相对容易识别,能够达到高效、简单、易行、方便、廉价的目的,适合乳腺癌的普查。在具体设计系统计算电磁场的逆散射方程时,由于其非线性和病态的本质,可以考虑用遗传算法[33,34]或神经网络[35,36]等方法更为方便。

我国乳腺癌的微波检测和微波热疗方面的研究才刚刚开始,可能会遇到很多的问题。但随着妇女地位的提高,以及国家的妇女政策,加之科研工作者的努力,这项有意的工作必将蓬勃发展。结合我国国情,这一项低风险低成本的检测手段必将造福于广大妇女,尤其对老少边穷地区的医疗保健事业有重大意义。

参考文献

〔1〕Larsen L E, Jacobi J H. Medical applications of microwave imaging. New York, IEEE Press,1986
〔2〕Gabriel C, Gabriel S, Corthout E. The properties of biological tissues: Ⅰ. Literature survey. Phys. Med. Biol., 1996, 41: 2231~2249
〔3〕Gabriel S, Lau R W, Gabriel C. The properties of biological tissues: Ⅱ. Measurements on the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 1996, 41: 2251~2269
〔4〕Gabriel S, Lau R W, Gabriel C. The properties of biological tissues: Ⅲ. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol., 1996, 41: 2271~2293
〔5〕Foster K R, Schwan H P. Dielectric properties of tissues and biological materials: A critical review. Crit. Rev. Biomed. Eng., 1989, 17: 25~104
〔6〕Chaudhary S S, Mishra R K, Swarup A, Thomas J M. Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies. Indian J. Biochem. Biophys., 1984, 21: 76~79
〔7〕Joines W T, Dhenxing Y Z, Jirtle R L. The measured electrical properties of normal and malignant human tissues from 50 to 900MHz. Med. Phys., 1994, 21: 547~550
〔8〕Foster K R, Schepps J L. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. Journal of Microwave Power, 1981, 16: 107~119
〔9〕Schepps J L, Foster K R. The UHF and microwave dielectric properties of normal and tumor tissues: variation in dielectric properties with tissue water content. Phys. Med. Biol, 1980, 25: 1149~1159
〔10〕Adair E R, Petersen R C. Biological effects of radiofrequency/microwave radiation. IEEE TMTT, 2002, 50(3): 953~962
〔11〕Chow W C. Imaging and inverse problems in electromagnetics. in Advances in Computational Electrodynamics: The FiniteDifference Time Domain Method, E.A. Taflove, Norwood, MA: Artech House, 1998. 12
〔12〕Bolomey J C. Recent European developments in active microwave imaging for industrial, scientific and medical applications. IEEE TMTT, 1989, 37(12): 2109~2117
〔13〕Rius J C et al. Planar and cylindrical active microwave temperature imaging: Numerical simulations. IEEE Trans. Med. Imag., 1992, 11(12): 457~469
〔14〕Caorsi S, Gragnani G L, Pastorini M. An electromagnetic imaging approach using a multiillumination technique. IEEE Trans. Biomed. Eng., 1994, 41(4): 406~409
〔15〕Semenov S Y et al. Threedimensional microwave tomograohy: Experimental prototype of the system and vector boen reconstruction method. IEEE Trans. Biomed. Eng., 1999, 46(8): 937~944
〔16〕Meaney P M, Fanning M W, Poplack S P, Paulsen K D. A clinical prototype for active microwave imaging of the breast. IEEE TMTT, 2000, 48(11): 1841~1853
〔17〕Meaney P M, Paulsen K D, Ryan T P. Twodimension hybrid element image rexonstruction for TM illumination. IEEE TAP, 1995, 43(3): 239~247
〔18〕Meaney P M, Paulsen KD, Chang J T. Nearfield microwave imaging of biologically based materials using a monopole transceiver system. IEEE Trans. Biomed. Imag., 1998, 46(1): 31~45
〔19〕Hagness S C, Taflove A, Bridges J E. Twodimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixedfocus and antennaarray sensors. IEEE Trans. Biomed., 1998, 45(12): 1470~1479
〔20〕Hagness S C, Taflove A, Bridges J E. Threedimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antennaarray element. IEEE TAP, 1999, 47(3): 783~791
〔21〕Fear E C. Microwave detection of breast cancer: a cylindrical confi9guration for confocal microwave imaging. University of Victoria. Ph. D. dissertation, 2001〔22〕Fear E C, Stuchly M A. Microwave system for breast tumor detection. IEEE Microwave Guided Wave Lett., 1999, 9(11): 470~472
〔23〕Fear E C, Stuchly M A. Microwave detection of breast cancer. IEEE TMTT, 2000, 48(11): 1854~1863
〔24〕周小强,白净等. 一种采用近红外激光相位阵列检测乳腺癌的新方法. 红外技术, 1997, 19(5): 45~46
〔25〕周小强,白净等. 一种采用近红外激光相位阵列检测乳腺癌的新方法(二). 红外技术, 1997, 19(6): 35~39
〔26〕http://210.73.139.14/zxcg/qh/qh0097.htm
〔27〕薛呈添,等.微波毫米波的医疗效应与机理.第五届全国微波能应用学术会议. 1995. 5
〔28〕刘青.微波热疗的基理与贴敷器的设计.西安邮电学院学报, 1998,3(3):26~30
〔29〕沙湘月, 等. 椭圆环微带照射器的偏心率对近场分布的影响.中国生物医学工程学报,1999,18(4): 409~416
〔30〕丁荣林, 等. 一种新型的内腔式微波医用辐射器. 微波学报, 1997,13(4):341~347
〔31〕Chen J Y, Gandhi O P. Numerical simulation of annularphased arrays of dipoles for hyperthermia of deepseated tumors. IEEE Trans. Biomed. Eng., 1992, 39(3): 209~216
〔32〕Kowalski M E, Jin J M. Determination of electromagnetic phasedarray driving signals for hyperthermia based on a steadystate temperature criterion. IEEE TMTT, 2000, 48(11): 1864~1873
〔33〕Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. AddisonWesley, 1989
〔34〕Caorsi S, et al. A computational technique based on a realcoded genetic algorithm for microwave imaging purposes. IEEE Trans. Geoscience and Remote sensing, 2000, 38(4)(Part 1): 1697~1708
〔35〕Wang Y M, et al. A neural network approach to microwave imaging. International Journal of Imaging System and Technology, 2000, 11(3): 159~163
〔36〕Rekanos I T. Neuralnetworkbased inverse scattering technique for online microwave medical imaging. IEEE T MAGN, 2002, 38 (2)(Part 1): 1061~1064

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top