微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 半导体二极管及其应用详解

半导体二极管及其应用详解

时间:04-29 来源:互联网 点击:

辑0、1来描述输入与输出之间的关系,所列出的表称为真值表(即逻辑状态表)。上述与门的真值表如表4-2所示。

另外,图4-7给出了或门电路及逻辑图符号。它也是由二极管和电阻组成的。图中A、B是两个输入端,F是输出端。设A、B输入端的高电平(逻辑1)为3V,低电平(逻辑0)为0V, 并忽略二极管D1、D2的正向导通压降。通过分析(详细过程读者可以自己分析)可知,只要A 、B当中有一个是高电平(逻辑1)输出就是高电平(逻辑1)。只有当A、 B同时为低电平(逻辑0)时,输出才是低电平(逻辑0)。这种“在决定一事件结果的所有条件中,只要有一个或一个以上满足时结果就发生”的逻辑关系称或(Or)逻辑。或门电路满足或逻辑关系。

或逻辑也称为逻辑加、或运算。通常用符号“+”来表示,设A、B、F分别为逻辑变量,则或运算的表达式可写成以下形式:

F=A+B

上式读作F等于A或B。逻辑或的含义是:只有输入变量A、B中有一个或一个以上为1, 输出变量F就为1;反之,只有A、B全为0时,F才为0。换言之,也就是“有1出1,全0出0”。这一结论也适合于有多个变量参加的或运算

表4-3列出了图4-7所示电路输入与输出逻辑电平的关系。表4-4为上述或门的真值表。

4.2 特殊二极管

除了上述普通二极管外,还有一些特殊二极管,如稳压二极管、光电二极管、发光二极管等,分别介绍如下。

4.2.1 稳压管

稳压管是一种特殊的面接触型半导体硅二极管,具有稳定电压的作用。图4-8(a)为稳压管在电路中的正确联接方法;图(b)和图(c)为稳压管的伏安特性及图形符号。稳压管与普通二极管的主要区别在于,稳压管是工作在PN结的反向击穿状态。通过在制造过程中的工艺措施和使用时限制反向电流的大小,能保证稳压管在反向击穿状态下不会因过热而损坏。从稳压管的反向特性曲线可以看出,当反向电压较小时,反向电流几乎为零,当反向电压增高到击穿电压Vz(也是稳压管的工作电压)时,反向电流Iz(稳压管的工作电流)会急剧增加,稳压管反向击穿。在特性曲线ab段,当Iz在较大范围内变化时,稳压管两端电压Vz基本不变,具有恒压特性,利用这一特性可以起到稳定电压的作用。

稳压管与一般二极管不一样,它的反向击穿是可逆的,只要不超过稳压管的允许值,PN结就不会过热损坏,当外加反向电压去除后,稳压管恢复原性能,所以稳压管具有良好的重复击穿特性。

稳压管的主要参数有:

1.稳定电压VZ。稳定电压VZ指稳压管正常工作时,管子两端的电压,由于制造工艺的原因,稳压值也有一定的分散性,如2CW14型稳压值为6.0~7.5V。

2.动态电阻rz。动态电阻是指稳压管在正常工作范围内,端电压的变化量与相应电流的变化量的比值。

稳压管的反向特性愈陡,rZ愈小,稳压性能就愈好

3. 稳定电流IZ。稳压管正常工作时的参考电流值,只有I≥IZ,才能保证稳压管有较好的稳压性能。

4.最大稳定电流IZmax 。允许通过的最大反向电流,I > IZmax管子会因过热而损坏。

5. 最大允许功耗PZM。管子不致发生热击穿的最大功率损耗PZM =VZ IZmax

6.电压温度系数αV。温度变化10C时,稳定电压变化的百分数定义为电压温度系数。电压温度系数越小,温度稳定性越好,通常硅稳压管在VZ低于4V时具有负温度系数,高于6V时具有正温度系数, VZ在4~6V之间,温度系数很小。

稳压管正常工作的条件有两条,一是工作在反向击穿状态,二是稳压管中的电流要在稳定电流和最大允许电流之间。当稳压管正偏时,它相当于一个普通二极管。图4-8(a)为最常用的稳压电路,当Vi或RL变化时,稳压管中的电流发生变化,但在一定范围内其端电压变化很小,因此起到稳定输出电压的作用。(该电路分析见4.4节)

4.2.2 光电二极管

光电二极管又称光敏二极管。它的管壳上备有一个玻璃窗口,以便于接受光照。其特点是,当光线照射于它的PN结时,可以成对地产生自由电子和空穴,使半导体中少数载流子的浓度提高。这些载流子在一定的反向偏置电压作用下可以产生漂移电流,使反向电流增加。因此它的反向电流随光照强度的增加而线性增加,这时光电二极管等效于一个恒流源。当无光照时,光电二极管的伏安特性与普通二极管一样。光电二极管的等效电路如图4-9(a)所示,图4-9(b)为光电二极管的符号。

暗电流:无光照时的反向饱和电流。一般1μA。

光电流:指在额定照度下的反向电流,一般为几十毫安。

灵敏度:指在给定波长(如0.9μm)的单位光功率时,光电二极管产生的光电流。一般≥0.5μA/μW。

峰值波长:使光电二极管具有最高响应灵敏度(光电流最大)的光波长。一般光电二极管的峰值波长在可见

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top