专业音频系统测试
每个麦克风均挂在天花板上,彼此成90°角。受测扬声器置于转盘上,而后者置于商用升降器上。升降器把扬声器升到麦克风的高度。墙上的激光器使Brodie能把受测扬声器对准麦克风。
在测试扬声器时,Brodie用放大的对数扫频正弦信号或多音信号激励它。麦克风连接到测试系统。“我们使用Listen公司的一种称作SoundCheck的系统。SoundCheck把24位PC声卡用作数字化仪,通过前置放大器把麦克风的声音数字化。”
Brodie指出:测试系统需要一些设置时间。它有一个步骤库,这些步骤定义了声卡、测试场校准数据、扬声器阻抗。这个库使测试系统能对记录的音频执行FFT等等数学运算,并生成刺激信号。
作为扬声器评测的一部分工作,Brodie需要测量扬声器的最大功率和频率。他测试扬声器时,它的各个端子电压高达100Vrms,然后从该点逐步降至–12dB。他随后计算电平的相对变化,来发现压缩量。他说:“如果扬声器回音管太小,就会产生风湍流,你就必须重新设计它。”
Brodie还利用两个麦克风的响应来描述扬声器的扩音情况的特征。“扬声器的波导管设计可能是用于90°散射模式。倘若结果是80°或100°,那么我们将重新设计波导管。”为了获取散射模式,Brodie以5°增量用转盘来旋转扬声器。
音频分析软件需要场校准数据,以便能用数学方式消除来自被测声音的反射和其它效应。为了获取校准数据,Brodie把扬声器放到外面,并使其音量足够大,以便在没有反射的情况下获取测量值。他然后利用这些基准测量值,并减去反射量来帮助完成校准。
换能器测试
如果你抬头看看4-pi实验室中的一面墙,你会看到一组木板,位于中央的木板安装了换能器。在这些板后面,Luis Esparza在2-pi实验室中评测换能器。2-pi实验室位于4-pi实验室地板上方很高的位置,来使反射量最小。
图2描绘了Esparza用于测量换能器散射模式的设置。一个麦克风得到0.5”铜管总成的支撑,能围绕距离它1m远的换能器旋转90°。Esparza从2-pi实验室内部移动这根管,相对于受测换能器来改变麦克风的角度。他以5°增量来移动麦克风,并记录换能器的离轴响应。Esparza使用Audiomatica公司的一种基于PC的音频分析仪,名为Clio。它由一个信号调节箱组成,后者连接到24位PCI声卡。他用这块卡产生步进式正弦扫频和中长序列(MLS)测量,后者测量换能器的转移函数。

图2,铜管总成使工程师能在受测换能器周围的一个1m弧线内移动麦克风。
Esparza用转移函数的曲线图来发现换能器的方向性响应,他据此确定扬声器的交叉网络应在何处从其低频换能器(低音扬声器)交叉到其高频换能器(高音扬声器)。在图3描绘的例子中,Esparza会把交叉频率设在大约2kHz。
Esparza还执行平面波测量,此时他测量压缩驱动器的响应(压缩驱动器是高效率换能器,产生高频声波)。正常情况下,压缩驱动器被设计用来以平面波形式发射声音。为了开展这些测量, Esparza把压缩驱动器连接到波导管,后者把所有声音传输到麦克风(图3)。他能测量直接来自换能器的平面波,并且散射不会影响用扫频正弦信号或MLS信号开展的测量。他说:“我们同时获取相位和振幅测量值,并能用相同的测试夹具测量失真和功率压缩。”

图3,波导管沿一个方向传输来自换能器的所有声音,以便测量。
2-pi实验室也配备了Esparza用来测量换能器或扬声器外壳物理振动的激光振动计。激光扫描扬声器锥体或壳壁表面。Esparza说:“我们想看到锥体
- 手机中音频系统的干扰分析(08-19)
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
