多通道ADC一致性的高精度测量方法
质上是同一路,由此可得如果不存在两路的延迟不一致,则这两路通道的信号进行相关操作得到的值应该是最大的。但是由于误差的存在,两路信号必然会有延迟的不一致。
本文根据这一原理,将采到公分器上的两路信号和根据公式(7)进行相关
如公式(7)所示,在(-T/2,T/2)的一个周期内对通道1信号进行时延,对时延后的信号与通道2信号的相关结果进行检测,当相关结果取得最大时的时延值即为通道2相对于通道1的延迟量τ’。
在对通道1信号进行延迟时,利用时域延迟和频域相位的对应关系所示的性质,在频率乘以线性相位,由于原始采样率较低,要得到较高的分析精度,需要用较高的采样率来计算延迟步进值,即对通道1信号进行非正周期采样点的时移。
上述分析和计算方法的边界条件是低通采样,即信号频率为满足奈奎斯特采样定理。但是本次测试有必要满足采用数字中频接收机系统的背景,因此本文还测试了ADC在带通采样情况下的延迟特性。
设边界条件为带通采样,原始中心频率为fc,采样率为fs,带通采样后的中心频率为,则带通采样后的信号为f’c:
即相位取反,这会导致延迟的符号取反,即原来超前的通表现出了滞后的现象,因此在这种情况下本文对计算结果取反以得到真实的延迟量。
2 实测数据分析
为了保证两个通道信号源的一致性,利用功分器将单路信号源的输出一分二作为两路ADC的输入,测试示意图如图1所示。
由于功分器以及同轴电缆的非理想因素,会影响一致性测试结果,因此本文去除了测试条件的影响。以延迟为例,设两个ADC通道的延迟为τ1和τ2,而两根同轴的延迟为τ'1和τ'2,假设按照图1所示方法测得通道2相对于通道1的延迟差分别为△τ,然后交换两根同轴线,再测得通道2相对于通道1的延迟差为△τ',则可得到以下关系:
通过上述分析,在实测数据分析阶段,本文利用了公式(12),以消除导线对延迟一致性测试的影响。
2.1 测量步骤
考虑到本次测量的背景涉及到低通采样和带通采样。而测试中的采样频率为20 MHz。因此本文所取的被采样信号的频率厂的范围从1 MHz到81 MHz,以此来充分测试在不同边界条件下各路ADC采样电路的一致性。
本次测试中,一共有16路ADC采样电路,分别分布在8片型号为ADC9269的ADC芯片上。为了更为准确的测量,本文测量了这16路采样电路中同一片ADC芯片的两路和不同片ADC的两路中的7组数据以进行比较分析。用以充分比较其差异。
为了消除导线对后期数据分析的影响,本文的测试采用的方法是采样完成一组数据后,将功分器的两路信号输出反过来再接入这两路,得到对应的一组数据,在后期处理中就可以消除导线对一致性测试的影响。
本次测试使用Xilinx公司ISE(Integrated Software Environment)软件的chipscope抓取数据,并把数据导入MATLAB中进行一致性的高精度分析,得到了大量的一致性分析结果数据。
2.2 一致性测试结果
经过以上测试步骤,并对得到的数据进行整合,得到表1和表2。它们反应了幅度一致性、延迟估计、导线对延迟的影响的最大值和最小值。
由表1和表2可以直观的看出,本文所考察的幅度一致性、直流偏置一致性、延迟一致性、导线对延迟的影响都达到了很高的精度。这是由于本文采用了合理的测量方法。这对于采样后的数字信号处理有很大的帮助。即便一致性测试结果表现很差,这种高精度的测试方法也对后期一致性的修正有很大的帮助。
表1与表2也反映了同一片ADC的两路和不同片ADC的两路之间的差异。在同一片ADC的不同两路中一致性是很好的。不同ADC间的一致性稍差。这是因为布线差异和时钟误差的影响。这种测试方法也可以给出电路设计者一些设计依据,以可以减少布线差异和时钟误差对一致性所造成的影响。
本文的背景是散射计,采样后需要进行的信号处理包括:波门采样、数字下变频、波束合成、脉冲压缩和滑窗求和。根据上述测试结果可以确定,本文背景散射计下的十六路ADC采样通道完全可以满足系统要求。
3 结束语
通过上述方法对大量的数据进行采集与分析,本文完成了对多通道ADC的测试。在考虑到低通采样和带通采样的情况下,分别对偏置一致性、幅度一致性和延迟一致性进行了测量。其中延迟一致性使用了两种方法,即FFT法和相关法。通过对以上的测试数据分析,得出这两种方法本质上是一样的结论,只是相关分析法为了提高分析精度,需要完成
的时移和相关运算较多,速度较慢。测试结果很好的反映了各个通道的一致性,这种方法不仅适用于本文背景所用的散射计系统,也适用于其他多路ADC通道的一致性测试。对于后期误差修正和后级
多通道ADC 幅度一致性 偏置一致性 延迟一致性 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)