微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 探头进阶之——选用单端探头还是差分探头?

探头进阶之——选用单端探头还是差分探头?

时间:12-26 来源:互联网 点击:
放大器。探头的带宽定义为探头输出除以探头输入所得的值再降低 3 dB 的频率。很显然,差分探头端头的带宽比单端探头宽得多 (7.8 GHz 对 5.4 GHz)。两种探头因其连线都使用了适当的阻尼电阻器而具有良好的频率平坦度。



  图 3 差分探头和单端探头频率响应曲线表明差分探头的响应曲线更宽、更平坦。

  图 4a 示出了差分探头的对大约 100 ps上升时间输入阶跃的已测时域响应曲线。图 4b 示出了单端探头的对大约 100 ps上升时间输入阶跃的已测时域响应曲线。在这两幅图中,红线是探头的输出,而绿线是探头的输入。要注意的是,这两幅图没有示出探头的阶跃响应,但却表明了两种探头对 100 ps阶跃的跟踪有多好。测量阶跃响应特性,要求输入是理想的、上升时间非常快的阶跃。在这种情况下,差分探头的上升时间要比单端探头快。这两种探头对 100 ps阶跃的跟踪都非常好。




  图 4 在差分放大器 (a) 和单端放大器 (b) 对 100 ps上升时间电压阶跃的响应曲线 (红线) 之间几乎没有差别,但是,差分放大器的响应没有过冲现象,并在 75 ps之内便进入了稍窄的误差带。

  共模抑制特性对差分探头和单端探头来说都是一个问题。对于差分探头而言,在正负两个探头
输入端加上同一个信号,不应产生任何输出;而对于单端探头而言,在信号输入端和接地输入端加上同一个信号也不应产生任何输出。若输出为零,则所加信号的共模抑制就是无穷大。

  差分探头模型和单端探头模型都示了探头衰减器/放大器地线到“大地”地线之间有一个电阻器和一个电感器 (图 1)。这两个元件构成了由探头电缆屏蔽层和大地地线组成的传输线(或“天线”)所产出的阻抗的简化模型。这一外部模式阻抗是很重要的,因为当你给单端探头加一个共模信号时,LG 值就与这一外部模式阻抗一起组成了一个分压器。此分压器对到达放大器的地线信号起衰减作用。由于放大器的信号和地线输入信号受到的衰减各不相同,在放大器的输入端上就出现了一个净信号,从而使放大器有输出信号。地线电感越大,共模抑制能力越低,所以当使用单端探头时,保持地线尽量短是很重要的。同样重要的是要注意这个外部模式信号对内部模式信号没有直接的影响,后者是同轴电缆内部正常的探头输出信号。但是,反射的外部模式信号确实会影响探头放大器的地线信号,因而间接影响内部模式信号。

  当你给差分探头加上一个共模信号时,衰减器/放大器的正负两个输入端都有同一个信号。所产生的唯一输出信号是该放大器抑制特性的函数,它与连线电感无关。

  在探测一个叠加在共模噪声上的单端信号时,到底是单端探头还是差分探头具有更好共模抑制特性呢?答案取决于单端探头的地线电感和差分探头放大器的共模抑制特性。就本例的差分探头和单端探头而言,图 5 表明了差分探头的共模抑制性能要比单端探头大许多。因此,在存在很大的共模噪音时,用差分探头来测量更为精确。这是差分探头与单端探头之间很典型的区别,除非单端探头的接地连接的电感非常小,而这一点在实际实践中是很难做到的。值得注意的是,这里所分析的单端探头的共模抑制特性与多数单端探头同样好,甚至更好,因为这里用的探头地线很短。图 5 所示的共模响应特性为:差分共模响应 = 20 log(VOC/VIC),式中VIC 是正负两个输入端上的共同电压,VOC 是加上 VIC 后探头的输出电压。单端共模响应 = 20 log(VOC/VIC),式中 VIC 是信号输入端和接地输入端上所施加的共同电压,而 VOC 是加上 VIC 后探头的输出电压。


  图 5 尽管差分探头和单端探头都具备某种共模抑制能力,但差分探头 (红色) 的性能则要好得多,它在 5 GHz 时的最小共模抑制大于 20dB。另一方面,单端探头 (蓝色) 在 2.5 GHz 时的共模抑制只有约 7dB。

  可重复性

高频探头存在的一个问题就是其测量的可重复性。在理想的情况下,探头、电缆和操作的手三者的位置不应引起探头测量结果的变化。但不幸的是,这些因素常常影响测量结果,究其原因,通常是外部模式阻抗发生了变化。外部模式阻抗比探头模型所示的更为复杂,这是因为探头、手和电缆三者的位置对无屏蔽的传输线(或天线)都会产生很大的影响。

  对外部模式阻抗发生变化的单端探头模型的分析表明,这种外部模式阻抗变化会使响应特性发生变化。此外,由于外部模式阻抗也是共模响应特性的一个因子,所以这一阻抗的变化会使共模抑制特性发生变化。地线的电感越大,响应特性就越差。

  对外部模式阻抗发生变化的差分探头模型的分析表明,这种外部模式阻抗变化对响应特性几乎没有影响。放大器的共模抑制会使出现在探头放大器地线上的任何信号受到衰减,从而大大地降低由探头、手和电缆三者的位置造成的变化。

  在图 3 中,差分探头的响应曲线比单端探头要平滑。单端探头的响应特性的起伏大多数是由于外部模式阻抗的变化引起的,当这些阻抗变球可以衰减和终止外部模式信号,并减小外部模式阻抗的变化,从而略为减小探头、手和电缆三者位置产生的影响。

在差分探头和单端探头之间的比较可能会使你认为:无论是探测差分信号还是单端信号,差分式探头的性能都更好。因此要问,为什么还要使用单端探头呢?单端探头在许多情况下依然可以获得令人满意的测量结果,而且它采用不大复杂的末端网络,因而价格低、体积小。小的探头可在狭窄的区域内进行探测,并可用多个探头连接非常近的多个测试点。从这点来看,拥有一个既可进行差分探测又可进行单端探测的探测系统似乎是最好的。

在电子工业中,许多信号传输大多已从单端拓扑结构转向差分拓扑结构,以缓解地线信号

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top