简述纳米测量技术与微型智能仪器
究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。
在纳米领域中,令人感到振奋的是扫描隧道显微镜(STM)和原子力显微镜(AFM)的出现。1982年,国际商业机器公司苏黎世实验室开发出世界上第一台STM,使人类能够直接观察到纳米世界。以后,各种新型扫描探针显微镜,如AFM、激光力显微镜(LFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、扫描近场光学显微镜(SNOM)等不断被开发出来,大大扩展了被观察的材料范围和应用场所。
以STM/AFM为基础发展的显微镜,可统称为扫描探针显微镜(SPM)。它们大都能观测到纳米尺度,以它们为基础,进行适当的改造,可进行纳米测量。SPM应用于纳米测量时,提供了一个直径非常小的非接触式探针,从而极大地提高了测量分辨率。
1.4纳米测量用SPM必须解决的问题
SPM(Statistical Parametric Mapping)是由UCL(UniversityCollege London)的Wellcome Trust Centre中心的成员及其合作者开发的应用于神经影像的软件。Statistical Parametric Mapping 是用来验证功能影像数据假说的一种能创建和评估的空间的统计方法。这些想法可被软件实现,这个软件就是SPM.SPM软件包用来分析脑的影像数据序列。这个序列可以是来自同一目标,不同队列或时间的一系列图像。目前版本可用来分析fMRI(Functional Magnetic Resonance Imaging,功能磁共振成像),PET(Positron Emission Tomography,正电子发射断层扫描),SPECT,EEG(electroencephalo- graph,脑电图)和MEG(magnetoencephalogram,脑磁图)。
(1)必须能满足相应科学仪器的技术要求
作为测量仪器,必须尽量符合测量仪器的所有准则,如阿贝原理等。
(2)所测得的量值必须能溯源到计量基准
作为测量仪器进行纳米测量,本质就是纳米被测尺度和纳米级测量基准的比对,因此,测量值必须能够与现有的测量基准进行传递。
(3)提高SPM测量精度
测量用SPM由扫描器、微探针、测量控制系统及隔振系统组成。扫描器由压电陶瓷组成;微探针的几何形状通常是金字塔式(pyramid shaped)和圆柱式(cone shaped tip);测量和控制系统用光学、电容或电感方法来测量针尖的微小位移;隔振系统一般有悬挂弹簧式、弹簧阻尼式等,它们均是影响测量精度的重要指标。有以下几个研究内容:
a.减小压电陶瓷误差
SPM的扫描器由压电陶瓷制成,减小压电陶瓷误差对测量数据的影响的方法是,采用电荷控制压电陶瓷和单向扫描去除迟滞误差,软件补偿减小非线性和蠕变误差。
b.减小扫描器的结构误差
扫描器结构误差导致了交叉误差,如一维压电陶瓷,在x方向加电压时,引起了y、z方向的位移,从而导致误差。通过对所测数据进行二次曲线拟合或整体曲面拟合去除交叉误差。
c.减小测量系统的结构误差
从测量学的基本原理可知,在高精度测量时,测量系统的结构应尽可能符合阿贝测量原理。
d.兼顾探针和样品之间的相互作用关系
SPM探针的尖端几何形状与采集的数椐密切相关。测量针尖的曲率半径越小,测量结果越接近真实形貌。为了提高测量精度,必须对微探针的几何形状进行精确的控制和测量。使用时,兼顾样品表面的精细程度,选取合适曲率半径和纵横比的探针。
1.5其它纳米测量技术
其它的纳米测量技术还很多,如激光纳米测量技术就有纳米零差检测法、纳米外差检测法、纳米混频检测法等。下面简介几种纳米测量技术。
(1)光学近场扫描技术
目前光学显微技术的分辨率受到衍射规律的影响而被限制在500nm的扫描范围内。为了消除衍射现象,将光学扫描定位于目标表面以内50nm处。这种情况下仪器就处于光学的“近场”。可用锥形波束导向器探测被研究表面的辐射量子。光学近场扫描技术的横向分辨率可达10nm,可用来研究纳米微区的光学性质。
(2)纳米光探针扫描外差干涉仪原理
激光器发出的激光束经分光镜被分为两束:一束光经声光调制器后,其频率为f+f1,该光束经一定的光路进入光电探测器;另一束经过声光调制器,其频率为f+f2,该光束经反射镜后被物镜会聚照射到被测表面上,反射后也进入光电探测器,以上两束激光在至少有f1-f2的频率度的探测器上合成即发生外差干涉。通过干涉信号获得表面的信息。
(3)X射线干涉仪原理
早期的实验证明,X射线波长的数量级约为0.1nm,晶体中的原子间距也是这个数量级,于是Laue在1912年建议用晶体作为衍射光栅。让X射线通过硫酸铜晶体,在它后面的感光胶片上就能得到中间黑点和外围对称分布的一些明点图样,叫Laue图。与可见光栅相似,中心明点与可见光的衍射一样是零级最大值,而外围明点则是由于原子的外层电子在
纳米测量技术微型智能仪 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)