微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 局部放电检测及局部放电测试方法

局部放电检测及局部放电测试方法

时间:12-28 来源:互联网 点击:

电缆进行局部放电定位采用Rogowski 线圈,传感器也能定量检测放电强度且测试频带较宽1~30MHz 现场测试证明该方法具有较好的实用价值。
1.3 超高频 UHF 局部放电检测技术

在20 世纪80 年代以前市场上局部放电检测仪的工作频带仅在1MHz 以下1982 年Boggs 和 Stone 在他们的试验中使测试仪器的测量频带达到1GHz 成功的测试出GIS 中的初始局部放电脉冲[5] 在此频带下噪声信号衰减剧烈可有效的实现噪声抑制且可以基本无损的再现局部放电脉冲从 而深化对局部放电的机理性研究。

超高频检测又分为超高频窄带检测和超高频超宽频带检测前者中心频率在500MHz 以上带宽十几MHz 或几十MHz 后者带宽可达几GHz 由于超高频超宽频带检测技术有噪声抑制比高包含 信息多等优点受到人们的关注通常所说的超高频检测技术即指超高频超宽频带检测,用于超高频局部放电检测的传感器主要为微带,天线传感器利用微带天线作传感器早在1980 年 Kurtz 等人就提出过他们设计的传感器用于大型电机局部放电测试安装在一个或两个磁极上可探测到单根定子线棒的放电目前微带天线传感器已在检测大型电力变压器GIS 电力电缆等设备的局部放电上有相关应用 对于大电机局部放电检测,H. G. Sedding 等人 在1991 年提出一种定子槽耦合器stator slot coupler 该传感器由接地平面带状感应导体及两端同轴输出电缆组成其耦合方式既不是感性也不 是容性而是具有分布参数的性质因此具有非常宽的频带且能够反映内部放电和外部干扰在波形上的差异。
1.4 介质损耗分析法

DLA 局部放电对绝缘材料的破坏作用是与局部放电,消耗的能量直接相关的因此对放电消耗功率的测量很早就引起人们的重视在大多数绝缘结构中,随着电压的升高绝缘中气隙或气泡的数目将增加此外局部放电的现象将导致介质的损坏从,而使得tgd大大增加因此可以通过测量tgd 的值来测量局部放电能量从而判断绝缘材料和结构的性能情况。

介质损耗分析法特别适用于测量低气压中存在,的辉光或者亚辉光放电由于辉光放电不产生放电脉冲信号而亚辉光放电的脉冲上升沿时间太长,普通的脉冲电流法检测装置中难以检测出来但这 种放电消耗的能量很大使得Dtgd 很大故只有采用电桥法检测Dtgd 才能判断这种放电的状态和带。来的危害。

但是。DLA 方法只能定性的测量局部放电是否 发生基本不能检测局部放电量的大小这限制了。DLA 方法的运用目前关于用DLA 方法测局部放,电的报道还很少。

以上列举了一些电力设备常用局部放电检测方法从目前市场上看电测法仍是局部放电检测中,最重要的手段其中的脉冲电流法已经很成熟由于其检测灵敏度很高且容易进行放电量校准采 用高频检测阻抗还可准确再现局部放电脉冲波形故在进行局部放电机理研究实验室离线测试中占,主导地位但是由于其易受到外电路的电磁干扰使其灵敏度大大下降在现场环境中脉冲电流法。

应用并不很多无线电干扰电压法中Rogowski 线圈传感器由于结构简单安装方便检测灵敏度高,频带宽等优点在局部放电在线监测中被广泛采用 现在大型电机变压器GIS 等设备的在线监测中均有应用超高频检测法是近年发展起来的新型局 部放电检测方法具有频带高灵敏度好抗电磁干扰能力强等显着优点被认为是最有潜力的局部放电在线检测方法但是超高频检测用微带天线 传感器目前还在研究之中制造工艺要求甚高技术尚不成熟。
2. 非电量检测法

局部放电发生时 常伴有光声热等现象的 发生对此局部放电检测技术中也相应出现了光 测法声测法红外热测法等非电量检测方法较之电检测法非电量检测方法具有抗电磁干扰能力 强与试样电容无关等优点。
2.1 声测法

介质中发生局部放电时 其瞬时释放的能量将 放电源周围的介质加热使其蒸发效果就像一个小 爆炸此时放电源如同一个声源向外发出声波由于放电持续时间很短所发射的声波频谱很宽 可达到数MHz 要有效检测声信号并将其转化为电 信号传感器的选择是关键常用的声传感器有用于气体中的电容麦克风condenser microphone 电介体麦克风electrets microphone 和动态麦克风dynamic microphone 用于液体中类似于声纳的 所谓水中听诊器hydrophone 用于固体中的测震仪accelerometer 和声发射acoustic emission 传感器在声-电传感器中工作频带和灵敏度是两个最为重要的指标若传感器工作频带过窄脉冲相 应时间过长容易造成信号混叠故必须保证传感器,一定的工作频带而在宽频传感器中要求传感器,几何尺寸必须小于声波波长但是减小传感器体积会导致传感器测量面积减小进而降低测试灵敏度反之若为了增大灵敏度而增大传感器几何尺

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top