微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�25闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸嬨倝鏌曟繛褍鍟悘濠囨⒑閹稿海绠撴い锔诲灣缁顢涢悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹
首页 > 射频和无线通信 > 射频无线通信文库 > 新型的三频带通滤波器设计方法

新型的三频带通滤波器设计方法

时间:08-26 来源:互联网 点击:

引 言

  随着无线局域网(WLAN)和全球微波接入互操作(Wimax)的迅速发展,多频通信系统将成为今后无线通信的主导发展方向。本文提出了一种新型的三 频带通滤波器设计方法,构成该滤波器的谐振腔是通过在通常的开环谐振腔内加载一个倒F型枝节,通过调节该枝节的各段长度及位置就可以实现所需要的三个谐振 频率。

1.传统的三频带通滤波器的设计与分析

  传统的三频带通滤波器通常采用阶梯阻抗谐振腔(SIR),通过调节阶梯阻抗微带线的电长度和特性阻抗,实现三个谐振频率,这种方法设计过程较为复杂,而且需要采用高阻抗微带线才能达到设计目标,这会使设计中的高阻微带线过细,导致加工困难,影响滤波器特性。

2.新颖的倒F型枝节加载开环谐振腔的设计与分析

2.1 结构

  结构如图1所示,利用外围尺寸La确定谐振腔的基本谐振模式后,只需要通过调节枝节的长度L1和L2及位置Ls和L3,就可以把谐振腔的高次谐振模式 调节 到所需要的位置,从而实现三频带通滤波器的设计,而不需要改变微带线的宽度,从而有效避免使用太细的微带线进行设计,从而使三频带通滤波器的加工更加容 易,有效减小加工误差。

2.2 仿真

  对该谐振腔利用软件AnSOFt HFSS进行仿真得到其前三个谐振频率随谐振腔结构参数的变化曲线由图2给出。图2(a)绘出了图1结构的谐振腔前三个谐振频率随谐振腔外围尺寸La变化 的曲线,并与不加载倒F型枝节的开环谐振腔谐振频率进行比较,分别用withF和withoutF表示。从图2(a)中可以发现,谐振腔的基模谐振频率在 两种情况下基本保持一致,而高次谐振模式的频率值由于倒F型枝节的存在发生了明显的变化,可见加载倒F型枝节可以有效的降低高次谐振模式的频率值,而基模 的频率可通过不加载倒F型枝节的谐振腔进行初步估计,即改变谐振腔的外围尺寸La调节基模的谐振频率。

  1501031M5-0闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸崹楣冨箛娴e湱绋佺紓鍌氬€烽悞锕佹懌闂佸憡鐟ョ换姗€寮婚悢纰辨晬闁挎繂娲eЧ妤呮偡濠婂懎顣奸悽顖涘浮閹瑦绻濋崶銊у帾婵犵數鍊埀顒勫磻閹剧粯鐓涢悗锝庡亞婢у灚鎱ㄦ繝鍛仩闁圭懓瀚版俊鎼佸Ψ閿旀儳缍掗梻鍌欒兌閹虫捇宕甸弽顓炵闁跨噦鎷�...

  倒F型枝节加载的开环谐振腔的前三个谐振频率随枝节长度L1变化的曲线由图2(b)给出。从图中可以看出,随着L1的增加,高次模式频率降低,而基模 的频 率几乎保持不变。因此,在谐振腔外围尺寸不变的条件下,我们可以通过调节枝节长度L1的值改变高次模式频率,以实现所需要的频率比。

2.3 倒F枝节的位置及长度对三频带通滤波器频率比的影响

  改变枝节的长度参数L1,L2,位置参数Ls和L3,就可以计算出随参数L1变化的高次谐振模式频率f3,f2与基模频率f1的比值f3/f1 和f2 /f1,这种设计方法的频率比的可调范围是比较大的。取Ls=7mm和17mm时,参数L1和Ls对频率比具有较大的影响,而L3=1mm和9mm时,参 数L3和L2对频率比的影响相对较小。因此,我们在设计中,可以先调节参数L1和Ls粗略的确定所需要的频率比,再改变参数L3和L2的值进行更为精确的 设计,以实现我们的设计目标。

  从以上的分析可以看出,改变倒F枝节的位置及长度可以实现各种频率比的三频带通滤波器设计,而且该种设计方法结构简单,加工容易,可广泛应用于多频无线通信系统中。

3.结语

  本文对多频带通滤波器的设计中,提出了一种可实现三通带设计的倒F型枝节加载谐振腔,对它的特性进行了分析研究,通过调节枝节的长度及位置,可实现不同的频率比以适应于多频通信系统的应用。证明了这种方法在设计无线通信系统三频带通滤波器的可实用性。

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top