频谱分析仪在卫星接收中的应用
时间:01-09
来源:互联网
点击:
频谱分析仪是在频率域对信号进行分析、测量的仪器。
在对卫星信号的监测方面尤其便利。
诸如一个转发器上有多少节目(载波),每个载波占据的带宽,信号的功率电平,有无反极化干扰,有无异常干扰,有无互调信号,等等,都可以清晰地显示出来。
通过观察下行信号的频谱,可以方便地调整接收天线的指向和极化角,从而使天线准确地对准卫星,提高接收质量。
首先简单介绍一下频谱分析仪的工作原理。
第一本振受扫描斜波发生器的控制,它是一个扫频本振,也就是说它的输出信号是在一定的频率范围内是连续地、线性地变化的。
变化的快慢即扫描速度当然也受斜波发生器的控制。
由于第一本振是扫频的,输入的被测信号经过第一变频器之后,每个频率点的信号都被“提取”了一次,经过后面电路的处理,最终使输入信号的频谱得以显示。
采用扫描式本振的效果,是在被测的频率范围上产生了一个扫描“窗口”,这个窗口扫过了每个被测的频点,将信号的频率成份依次展示出来。
设定的窗口扫描范围(即Fend-Fstart)称为扫描跨度(SPAN),扫描窗口的宽度也就是可调带宽滤波器的带宽称为分辨率带宽(RBW),窗口扫描一次所需的时间称为扫描时间(SWEEP TIME)。
要想看某个大频率范围内的信号频谱,可将扫描跨度选得大一些,反之则选小一些。
分辨率带宽应根据所观察信号的带宽来确定,特别是在两个被测信号频率靠得较近时,如果分辨率带宽偏大(分辨率偏低),则频谱仪可能无法分辨这两个信号。
扫描时间的选择应根据测试的内容来定。
比如正在根据信号的强弱来调整天线,则扫描的速度应快一些(缩短扫描时间),这样便于迅速发现信号频谱电平的变化。
在卫星信号接收中,频谱分析仪的接入方法通常有两种。
一是接至LNA(低噪声放大器)之后;二是接至LNB(低噪声变频器)之后。
接至LNA之后所看到的是C(或Ku)波段的信号。
接至LNB之后看到的则是L波段的信号。
需注意的是,由于LNB是通过传输电缆供电的,频谱分析仪不能直接接到LNB上,而是需要借助一台接收机来供电,或是另设供电电路。
频谱分析仪在卫星地面接收中的基本应用如下。
(1)观察某个极化上的所有信号。
这是用来观察所接收卫星上某个极化(垂直或水平)上所有的信号。
此时的扫描跨度应不低于500MHZ,所看到的是一组较窄的谱线。
(2)观察某个转发器上的信号状况。
这是指观察某极化上某个转发器的信号状况。
如果是SCPC方式,可以看清每个信号的细节,如功率电平,占有带宽,甚至可以计算每个载波信号所占转发器总功率的比例。
(3)精确调准天线的指向和极化倾角。
每颗卫星都有自己的信标信号,这是一个单一频率的幅度稳定的正弦波信号。
借助于频谱分析仪可以清晰地观察到接收的信标信号的电平大小,从而调准天线的指向和极化倾角。
由于信标信号往往只安排在某一个极化上,所以,先在这个极化方向上进行接收,仔细地调整天线,从频谱仪上找到信标信号最大点,这时的天线可认为已经相当精确地对准了卫星。
再在与之正交的极化方向上观察接收到的信标信号,仔细地转动馈源喇叭,使信标信号达到最小,这就说明极化倾角也已调整好。
(4)观察高频头(LNB)本振的准确度。
高频头在使用一段时间之后,本振频率会发生偏移,严重时可偏移几兆赫,这对数字信号的接收会产生一定影响。
使用频谱仪可以直观准确地发现这一问题。
比如,某C波段卫星的信标为3699MHZ,高频头的本振为5150MHZ,则变频后的信标应位于为5150-3699=1451MHZ。
在频谱仪上使用标记对准这一信标,看标记的频率是多少,该标记频率与正常频率的差值就可认为是高频头本振的偏移量。
(5)分析LNA和LNB的性能。
用频谱仪还可以观察分析LNA和LNB的一些性能,如频响、互调等。
在频谱仪上常常发现不同转发器下行信号的幅度相差较大,通常情况下这并非星上转发器的原因,而是LNA或LNB的幅频特性不好。
另外常见的现象是由于放大电路的线性不好而产生的互调产物。
频谱仪上显示的是某个转发器的下行信号,但在最高端出现了一个异常包络,且维持了较长时间,在更换了LNB之后,这个包络就消失了,由此断定,该包络是LNB中产生的互调产物。
在对卫星信号的监测方面尤其便利。
诸如一个转发器上有多少节目(载波),每个载波占据的带宽,信号的功率电平,有无反极化干扰,有无异常干扰,有无互调信号,等等,都可以清晰地显示出来。
通过观察下行信号的频谱,可以方便地调整接收天线的指向和极化角,从而使天线准确地对准卫星,提高接收质量。
首先简单介绍一下频谱分析仪的工作原理。
第一本振受扫描斜波发生器的控制,它是一个扫频本振,也就是说它的输出信号是在一定的频率范围内是连续地、线性地变化的。
变化的快慢即扫描速度当然也受斜波发生器的控制。
由于第一本振是扫频的,输入的被测信号经过第一变频器之后,每个频率点的信号都被“提取”了一次,经过后面电路的处理,最终使输入信号的频谱得以显示。
采用扫描式本振的效果,是在被测的频率范围上产生了一个扫描“窗口”,这个窗口扫过了每个被测的频点,将信号的频率成份依次展示出来。
设定的窗口扫描范围(即Fend-Fstart)称为扫描跨度(SPAN),扫描窗口的宽度也就是可调带宽滤波器的带宽称为分辨率带宽(RBW),窗口扫描一次所需的时间称为扫描时间(SWEEP TIME)。
要想看某个大频率范围内的信号频谱,可将扫描跨度选得大一些,反之则选小一些。
分辨率带宽应根据所观察信号的带宽来确定,特别是在两个被测信号频率靠得较近时,如果分辨率带宽偏大(分辨率偏低),则频谱仪可能无法分辨这两个信号。
扫描时间的选择应根据测试的内容来定。
比如正在根据信号的强弱来调整天线,则扫描的速度应快一些(缩短扫描时间),这样便于迅速发现信号频谱电平的变化。
在卫星信号接收中,频谱分析仪的接入方法通常有两种。
一是接至LNA(低噪声放大器)之后;二是接至LNB(低噪声变频器)之后。
接至LNA之后所看到的是C(或Ku)波段的信号。
接至LNB之后看到的则是L波段的信号。
需注意的是,由于LNB是通过传输电缆供电的,频谱分析仪不能直接接到LNB上,而是需要借助一台接收机来供电,或是另设供电电路。
频谱分析仪在卫星地面接收中的基本应用如下。
(1)观察某个极化上的所有信号。
这是用来观察所接收卫星上某个极化(垂直或水平)上所有的信号。
此时的扫描跨度应不低于500MHZ,所看到的是一组较窄的谱线。
(2)观察某个转发器上的信号状况。
这是指观察某极化上某个转发器的信号状况。
如果是SCPC方式,可以看清每个信号的细节,如功率电平,占有带宽,甚至可以计算每个载波信号所占转发器总功率的比例。
(3)精确调准天线的指向和极化倾角。
每颗卫星都有自己的信标信号,这是一个单一频率的幅度稳定的正弦波信号。
借助于频谱分析仪可以清晰地观察到接收的信标信号的电平大小,从而调准天线的指向和极化倾角。
由于信标信号往往只安排在某一个极化上,所以,先在这个极化方向上进行接收,仔细地调整天线,从频谱仪上找到信标信号最大点,这时的天线可认为已经相当精确地对准了卫星。
再在与之正交的极化方向上观察接收到的信标信号,仔细地转动馈源喇叭,使信标信号达到最小,这就说明极化倾角也已调整好。
(4)观察高频头(LNB)本振的准确度。
高频头在使用一段时间之后,本振频率会发生偏移,严重时可偏移几兆赫,这对数字信号的接收会产生一定影响。
使用频谱仪可以直观准确地发现这一问题。
比如,某C波段卫星的信标为3699MHZ,高频头的本振为5150MHZ,则变频后的信标应位于为5150-3699=1451MHZ。
在频谱仪上使用标记对准这一信标,看标记的频率是多少,该标记频率与正常频率的差值就可认为是高频头本振的偏移量。
(5)分析LNA和LNB的性能。
用频谱仪还可以观察分析LNA和LNB的一些性能,如频响、互调等。
在频谱仪上常常发现不同转发器下行信号的幅度相差较大,通常情况下这并非星上转发器的原因,而是LNA或LNB的幅频特性不好。
另外常见的现象是由于放大电路的线性不好而产生的互调产物。
频谱仪上显示的是某个转发器的下行信号,但在最高端出现了一个异常包络,且维持了较长时间,在更换了LNB之后,这个包络就消失了,由此断定,该包络是LNB中产生的互调产物。
频谱分析仪卫星接 相关文章:
- 频宽、取样速率及奈奎斯特定理(09-14)
- 为什么要进行信号调理?(09-30)
- IEEE802.16-2004 WiMAX物理层操作和测量(09-16)
- 为任意波形发生器增加价值(10-27)
- 基于PCI 总线的高速数据采集系统(09-30)
- 泰克全新VM6000视频测试仪助力数字电视等产品测试 (10-06)