微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 用数字示波器对系统总线实时抖动测试不失为实用可靠之方

用数字示波器对系统总线实时抖动测试不失为实用可靠之方

时间:01-12 来源:互联网 点击:

预测复杂系统的数据传输性能。

周期抖动用来衡量时钟或数据周期样点的边沿到边沿定时。例如,通过测量1000个时钟周期上升沿之间的时间,可以对统计的周期取样,统计数据会告诉您信号的质量。标准偏差等价于RMS周期抖动,最大周期减去最小周期,得到峰到峰周期抖动。每个不同周期测量的精度决定着抖动测量的精度。

相位抖动用来衡量被测信号边沿相对于一个参考信号边沿的时间偏差,从而可以检测到信号相位中的任何变化。这一指标在许多方面不同于周期测量指标。第一,它单独使用每个边沿,而没有使用period周期测量,它可以测量大的时间位移。边沿相位可以偏离几百或几千度,但仍可以以非常高的精度进行测量(360度等于一个周期或循环时间)。测量相位误差常用的指标是时间间隔误差(TIE),测量结果用相对于度的秒来表示。TIE把信号边沿与参考边沿匹配起来,对各边沿之差相加计算总和。在比较了大量的边沿之后,可以为分析提供一个样点集合。与上面的周期测量一样,标准偏差变成RMS TIE,最大时间减最小时间得到峰到峰值(peak-to-peak)TIE等等。

2.4清晰显示抖动测试波形与参数

TIE测试精度取决于构成样点集合的各个测量的精度。而其波形和上升时间的描绘都是通过实时采样电路和高速A/D变换器获得波形数据,再通过插值运算得到的。由于DS1000数字示波器是5.7’64K色TFT彩色液晶屏 使对一个时钟信号的不同抖动测试波形与参数显示更加清晰,见图2示意所示。

2.5良好的定时稳定度与Sin(X)/X正弦内插技术是测试精度的保证

对于具有定量指标要求的参数精度的测量非常重要关,而这方面所选用的示波器是否具有良好的定时稳定度与Sin(X)/X正弦内插技术有很重要的关系。特别对抖动测的精度更是如此,只有这样才能以保证足够的容许误差和测量余量。这是为什么?

因其内插误差是指由在实际电压样点之间进行线性内插导致的误差。在测量100ps上升时间的信号、示波器以25GSa/s采样率在50%电压门限上进行检测时,这一误差要小于0.3ps RMS。值此应用DS1000数字示波器较高的Sin(X)/X正弦内插技术减小误差。在大多数情况下,这一原因导致的误差会远小于其它误差源,则通过使用如Sin(X)/X内插,可以进一步减小这一误差较为合适,当然也可有其它方法亦可改善。

而良好的定时稳定度主要取决于包括DS1000示波器的抗干扰性能、定时稳定度、取样噪声、仪器幅度本底噪声和内插误差等因素。通过测定此DS1000数字示波器在这方面是能以良好的性能获得了实时抖动测试的精度。由于DSl000数字示波器集成USB Host,支持U盘存储、USB接口打印和直接系统升级功能,在软件测试方面有较好的支持,故对示波器上所显示的波形进行存储和数据传输并通过打印机直接打印。

3、归纳

一般来说, 数字示波器中的时基稳定性包括参考时钟、倍频器、计数器等相关电路的稳定性。应该说直接影响着定时测量精度的DC1000数字示波器中采样系统中定时元件的稳定性较好。所以精确度较好。如果时基有误差,那么基于该时基进行的测量会具有同等或更大的误差。

DS1000数字示波器是一种非常强大的工具,它可应对工程师们来说使用其非常先进的测量和分析功能。它可应用于数字设计和调试、视频设计和调试、考察瞬变现象、功率测量及DVD分折,熟悉示波器的任何人都可以使用,其简便易用可大大提高了生产效率。

上述是对以基于PCI高速串行总线的PXI系统抖动测试技术与和方法为例作重点介绍。这仅是基本理念,具体如何测量与分析要根据不同的总线系统和不同的应用场合与精度来选定与运作。

4、用示波器与逻辑分析仪对系统电源检测

检测参数包括:开关损耗,纹波波动;对系统时钟应检测频率、边沿、信号完整性与传播时延;见图1上半部所示。 用示波器与逻辑分析仪对关键控制信号检测沿到沿,信号完整性;对处理器内核检测复位、引导、存储器访问与外设访问。使用逻辑分析仪进行定时分析为:沿到沿信号关系,需要查看4条以上的通道,一般包括10-30个信号,还有触发功能,隔离问题以及精确的边沿位置;信号完整性,隔离常见的SI问题与查看相关的模拟/数字信号;以及准确地采集信号。

其逻辑分析仪功能还可对内核的检验,包括二项内容:定时,即控制信号交互和状态,即处理器/总线执行;信号完整性的调试。见图1下半部所示。从中看出逻辑分析仪需求为;“查看4个以上信号的关系”,“需要查看徽处理器或总线正在进行哪些操作”,“需要比示波器生成的触发更复杂的触发!”,”需要从多条通道中识别信号完整性问题!”,“需要查看两条以上的总线相互影响

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top