HFSS求解模式,扫频方式等的说明
解决类型(求解器设置)
模式驱动求解
当你想用HFSS计算微波传输带,波导,传输线等被动高频结构的基于模式的S参数时,选择Driven Modal。S参数解决将用一系列波导模的入射和反射能量来表示。
终端驱动求解
当你想用HFSS计算基于终端的多导体传输线端口的S参数时,选择Driven Terminal Solution。S参数的解将用一系列电压和电流来表示。
本征模求解
当你想计算一个结构的本征模式,或者谐振时,选择Eigenmode Solution。本征模式解决器找到结构的谐振频率并计算在这些频率点的场。本征模式解决器可以找到损耗结构和无损结构的本征模式,可计算空腔的无负载Q。Q是品质因数,是系统消耗了多少能量的量度。无负载Q是由无损材料造成的能量损失。因为端口和其他源被限制在本征模式问题中,被计算的Q不包括由这些源造成的损耗。
以下限制应用于本征模解决设计:
以下激励不可被定义:端口,入射波,电压源,电流源,偏置磁场源。
辐射边界不可被定义。
频率扫描是不可用的。
你不能观察或绘制S矩阵参数。
设计不能包括铁素体。
计算谐振频率
本征模频率(结构的谐振频率)如下计算: ,其中c是光速,f是波频。
计算品质因数
Q是无负载品质因数,是结构中由损耗材料造成的能量损耗多少的量度。因为端口和其他源被限制在本征模式问题中,被计算的Q不包括由这些源造成的损耗。
HFSS使用下式计算近似的品质因数,其中U是空腔存储的总能量,P是功率损耗,例如电阻损耗。
计算自由空间波数
自由空间波数k0谐振模式的频率有关,对于无损问题通过下式计算,其中S和T是依赖于模型几何和网格的矩阵,x是电场解,k0是自由空间波数。
场解
在反复适应性求解过程中,在所有场解之前S参数是典型的稳定。因此,当你有兴趣分析与某个结构有关的场解时,使用比正常情况更严格的收敛准则是需要的。
另外,对于任意给定的适应性反复的数目,解出的磁场(H场)比电场(E场)的精确度低,因为磁场是通过它跟电场的关系 由电场计算出来的。
场覆盖图
在HFSS中,场覆盖代表在表面或实体内的基本场量或派生场量。绘制场的实体可以是模型几何 中已经存在的部分,也可以是你在后处理模式中回转的实体。如果你选择了一个表面,HFSS将在表面绘制场量。如果你选择了一个实体,HFSS将在该实体的 体积内部绘制场量。你可以选择绘制场的标量图或矢量图。标量图使用渐变线来说明表面或体积内的场量的数量。矢量图使用箭头来说明场量x,y,z分量的数 量。
场量
默认的能被绘图的场量,它们的定义,以及相应的单位如下所示:
场量 定义 单位
Mag E 电场模 V/m
Mag H 磁场模 Amps/m
Mag Jvol 体电流密度模 Amps/m2
Mag Jsurf 面电流密度模 Amps/m
Complex MagE 电场复数模 V/m
Complex MagH 磁场复数模 Amps/m
Complex Mag Jvol 体电流密度的复数模 Amps/m2
Complex Mag Jsurf 面电流密度的复数模 Amps/m
Vector E 电场 V/m
Vector H 磁场 Amps/m
Vector Jvol 体电流密度J(x,y,z) Amps/m2
Vector Jsurf 面电流密度J(x,y,z) Amps/m
Vector Real Poynting 坡印亭矢量,定义为E x H* W/m2
Local SAR 特定吸收率 W/kg
Average SAR 平均特定吸收率 W/kg
指定相位角
指定场量被计算时的相位角使你能计算场数量在其周期不同点上的实部。这些量可表示为A(x, y, z, t) = A(x, y, z)cos(ωt + θ(x, y, z)),其中ω是场量相位角振荡频率,在解决时设定。θ (x,y,z)是相角(余弦波偏置量,峰值在t=0)。
峰值与RMS相量的对比
这部分关注场量在HFSS中是如何表示 的。有些用户用不到这些信息,例如想知道端口S参数或场解相对振幅的用户。而想知道场量绝对值的用户需要考虑两种场表示方式的不同,即峰值和平均值。 HFSS在频域解决并获得定态有限元场解的相量表示式。物理量如瞬时(时域)电场随后作为派生量从相量表示式中得到。
如果Ex是代表时谐电场的"峰值"相量的x分量,在时刻t的物理电场x分量,表示为Ex(t),通过 来计算,其中 R 是复数或复函数的实部, 是角频率,j是虚部单位,t是时间。另外
- PBG结构的微带贴片天线设计(03-26)
- 220GHz无源三倍频器设计(11-04)
- HFSS三种辐射边界的区别和选择技巧(05-15)
- 天线去耦网络的仿真设计(08-10)
- HFSS算法及应用场景简介(06-09)
- 基于HFSS的双脊喇叭天线的设计与仿真(09-20)