微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 高阻器件低频噪声测试技术与应用研究--高阻器件噪声测试技术的验证和应用

高阻器件低频噪声测试技术与应用研究--高阻器件噪声测试技术的验证和应用

时间:02-27 来源:互联网 点击:

传统电压噪声测试技术可以用于测试阻值较低的厚膜电阻的电压噪声。但当被测贴片电阻的阻值不断升高时,对于放大器来说,相当于信号源阻抗在不断增大,因此传统方法的测试效果会不断下降。对于电压噪声测试来说,相当于噪声信号不断逼近系统的本底噪声,最终当阻值升高达到一定阻值时,会导致样品的噪声信号湮灭在系统背底噪声之中,无法被识别。

所以,为了能对高阻厚膜电阻进行低频噪声测试技术,我们必须采用其他技术,这里我们采用图3.9中设计的电压噪声测试技术来进行测试。并通过对结果数据的分析来验证本测试技术。

4.3.3根据噪声数据进行器件筛选



我们对10M的厚膜电阻进行了噪声测试。从实验中得到测试数据后,最重要的一步就是根据数据对器件进行筛选,如图4.5所示。

在噪声筛选方法中,常用的筛选方法有宽带噪声电压判据、谱值比筛选判据、B值筛选判据、点频值筛选判据。本实验对10M的若干厚膜电阻用不同的筛选判据进行了筛选。

采用不同判据的筛选结果如下:

(1)宽带噪声电压筛选

噪声电压是最直观的筛选判据,它将频域上的噪声频谱密度转换为等效噪声电压幅值,该幅值决定了该样品的分辨率。具体的转换公式为:

(4-1)式中f 1为宽带噪声的起始频率,f 2为宽带噪声的截止频率。在本筛我们使用此筛选判据对若干样品进行了筛选,点频谱值的单位为:V 2 /Hz.第一频点为1Hz,第二频点为2Hz.选中将f 1设为1Hz,f 2设为1Khz.我们使用此筛选判据对若干样品进行了筛选,结果如下:

从上图中我们可以看出,不同样品的低频噪声电压差别很明显,这也说明了筛选的意义。2号样品的噪声电压最低,因而2号样品作为传感器的电流转电压部件最合适。

(2)谱值比筛选

本筛选判据根据第一个频点的谱值s和第二个频点和第一个频点的谱值比r来共同判定器件的类别。设s的均值为s0,方差为s1;r的均值为r0,方差为r1.点频判据系数为t1,谱值比判据系数为t2.具体判定规则如下:

1) s小于等于s0减去t1乘以s1,则为一类品;

2) s小于等于s0加上t1乘以s1,且s大于s0减去t1乘以s1,则为二类品;

3) s大于s0加上t1乘以s1,则为三类品;

4) r小于等于r0加上t2乘以r1,则为一、二类品;

5) r大于r0加上t2乘以r1,则为三类品;

6)若通过r判定为三类品,则不管s判定的结果如何,该产品为三类品;

7)若通过s判定为三类品,则不管r判定的结果如何,该产品为三类品;

8)若通过r判定为一、二类品,s判定为一类品,该产品为一类品;

9)若通过r判定为一、二类品,s判定为二类品,该产品为二类品。

亦可参照下表进行筛选:


我们使用此筛选判据对若干样品进行了筛选,点频谱值的单位为:V 2 /Hz.第一频点为1Hz,第二频点为2Hz.


(3)B值筛选

本筛选判据根据公式(1)中的B值来判定器件类别。先对B取10为底的对数记为b,设b的均值为b0,方差为b1,筛选判据为t.判定规则如下:

1)若b大于b0加上t乘以b1,则该器件为三类品;

2)若b小于b0减去t乘以b1,则该器件为一类品;

3)若b小于等于b0加上t乘以b1,同时大于等于b0减去t乘以b1,则该器件为二类品;

我们使用此筛选判据对若干样品进行了筛选,B值的单位为:V 2。拟和范围从1.00Hz到100.00Hz.此模块需要首先在后台调用频谱拟合模块,对数据进行拟合,获取B值。筛选结果如下表所示:

(4)点频值筛选

本模块根据第一个频点(一般为1Hz)的谱值s来判定判定器件类别。设s的均值为s0,方差为s1,筛选判据为t.判定规则如下:

1)若s大于s0加上t乘以s1,则该器件为三类品;

2)若s小于s0减去t乘以s1,则该器件为一类品;

3)若s小于等于s0加上t乘以s1,同时大于等于s0减去t乘以s1,则该器件为二类品;我们使用此筛选判据对若干样品进行了筛选,其中第一频点为1Hz.筛选结果如下表所示:

4.3.4高阻值厚膜电阻中的爆裂噪声

在本实验中,我们发现了大多数高阻厚膜电阻含有明显的爆裂噪声,其典型时域波形和频域功率谱密度如图4.6和图4.7所示:

厚膜电阻的结构比一般电阻更加复杂,其电阻体的材料分布不是均匀的,而是由许多导电颗粒分布在绝缘材料之中构成的,如图4.8所示:



上图中的灰色球体是导电颗粒,通常是钌系氧化物RU2O2上图中黑色部分是绝缘介质,俗称玻璃釉,通常是由氧化铅和二氧化硅构成。由图4.8可见,电阻中的导电颗粒被绝缘介质分离出来,彼此之间一般不会接触。在制作电阻时,导电颗粒添加的越少,则电阻的阻值越大,这也是常用的一种调节电阻阻值的方式。


已有针对厚膜电阻的研究同样在实验中的一部分厚膜电阻中发现了爆裂噪声厚膜电阻中爆裂噪声的产生和电阻材料的构成有直接的关系。载流子在厚膜电阻中的输运是通过导电颗粒与绝缘层构成的特殊网络来实现的,同时载流子输运机制是由厚膜电阻中导电颗粒之间的绝缘层来决定的,而非电阻体中的金属氧化物颗粒,因为载流子在这些绝缘层形成的势垒两边进行隧穿导电,势垒决定时域爆裂噪声中我们可以看到高阻厚膜电阻中的爆裂噪声是一种二的高度了载流子的输运。有研究者认为厚膜电阻中的爆裂噪声是由钌系厚膜电阻中诸如气泡,空洞之类的表面缺陷导致的,并且阻值一定的情况下,尺寸更小的厚膜电阻具有更大的爆裂噪声,且厚膜电阻中的爆裂噪声主要出现在材料中最高场强的区域。

然而,目前对于厚膜电阻中爆裂噪声的起源尚无定论。有研究者认为爆裂噪声是由导电颗粒之间非常薄的绝缘玻璃釉中的缺陷导致的[29],这些缺陷会不断俘获或释放载流子,形成载流子的产生-复合中心,当这些产生-复合中心处于高场强时,则它们会使势垒发生变化从而引起隧道电流的涨落,导致爆裂噪声。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top