微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电源通路管理器集成电路提供高压保护

电源通路管理器集成电路提供高压保护

时间:06-17 来源:电子产品世界 点击:

开关电源通路系统的优点

  与电池馈送型系统相比,线性电源通路系统的优点是向负载/系统提供功率的效率高,但是在线性电池充电器单元中有功率损耗,尤其是如果电池电压较低(导致输入电压和电池电压之间出现大的压差)时更是这样。而基于开关模式拓扑的电源通路电路通过符合 USB 要求的降压型开关稳压器产生中间总线电压,稳压器稳定在比电池电压高 300mV 的电压上(参见图 1)。这种形式的自适应输出控制被凌力尔特公司称作“电池跟踪(Bat-Track)”。稳定的中间电压刚好高到允许通过内部线性充电器恰当充电。用这种方法跟踪电池电压,最大限度地降低了线性电池充电器中的功率损耗、提高了效率并最大限度地提高了提供给负载的功率。具有平均输入限流的开关架构最大限度地提高了使用 USB 电源提供的所有 2.5W 功率的能力。可选外部 PFET 降低了电池和负载之间理想二极管的阻抗,进一步减少了热损耗。这种架构是使用大电池(>1.5AHr)的系统“必须”采用的。


图 1  简化的开关电源通路电路(4088 F01)

LTC4098—兼具高效率充电和高压保护

  LTC4098 (图2)是一种自主式高效率电源通路管理器、理想二极管控制器和电池充电器,用于通过 USB 供电的便携式设备,如媒体播放器、数码相机、PDA、个人导航器和智能电话,该器件采用超薄(0.55mm)20 引脚 3mm×4mm QFN 封装。就汽车、Firewire 或其它高压应用而言,LTC4098 用凌力尔特公司的开关稳压器提供电池跟踪控制,工作输入高达 38V(瞬态为 60V),最大限度地提高了电池充电器效率、减小了热损耗,甚至用更高电压电源也可以无缝运作。


图 2  LTC4098 简化框图

LTC4098 提供高达 66V 的过压保护(OVP)电路,仅需要一个外部 NFET/电阻组合,可防止偶然的高压情况引起的输入损坏。该集成电路自动降低充电电流可实现快速接通工作,确保一插上电源插头就向系统负载供电,甚至电池没电或缺失时也一样。其片上理想二极管保证总是向 VOUT 提供充足的功率,即使 LTC4098 的两个输入引脚的功率不充足也一样。该集成电路的理想二极管控制器可用来驱动可选 PFET 的栅极,将对电池的阻抗降至 30mΩ 或更低。

  LTC4098 的全功能单节锂离子/聚合物电池充电器允许负载电流超过从 USB 端口吸取的电流,同时符合 USB 负载规范。因为保存了能量,所以就快速充电而言,该集成电路的高效率开关输入级几乎将 USB 端口提供的所有 2.5W 功率都转换成了可用系统电流,从 USB 端口限制的 500mA 实现了高达 700mA 的电流。用交流适配器供电时还有 1.5A 的可用充电电流。

过压保护(OVP)

  LTC4098 仅用 N 沟道 FET 和 6.04kΩ 电阻这样两个外部组件,就能在 VBUS 或 WALL 意外地加上过大电压时保护自己免受损坏。最高安全过压幅度将由该外部 NMOS 晶体管及其漏极击穿电压决定。

电池跟踪开关稳压器的输入限流和高压控制

  LTC4098从VBUS 到VOUT 的功率传递由 2.25MHz恒定频率降压型开关稳压器控制。为了满足USB最大负载规格要求,该开关稳压器含有一个测量和控制系统,以确保平均输入电流保持低于CLPROG引脚的编程值。这样,VOUT 就可以驱动外部负载和电池充电器的组合。

  如果这个组合负载没有让开关电源达到编程设定的输入限流值,那么该集成电路的 VOUT将跟踪大约比电池电压高0.3V。通过将电池充电器电压保持在这个低电压值上,最大限度地降低了电池充电器的功率损耗。

  如果组合外部负载加上电池充电电流足够大,使得开关电源达到了编程设定的输入限流值,那么电池充电器将严格按照满足外部负载所需的量降低充电电流。即使电池充电电流被编程至超过容许的USB 电流,就平均输入电流而言,也不会不满足 USB 性能规格。另外,如果VOUT端的负载电流导致超过从VBUS的编程设定功率,那么将通过理想二极管从电池吸取额外的负载电流,即使电池充电器正在工作也一样。

  WALL、/ACPR和VC引脚可连同 LT3480 等外部高压降压型开关稳压器一起使用,以最大限度地减少用较高电压源工作时产生的热量。电池跟踪控制电路将外部开关稳压器的输出电压调节至较高的(BAT + 300mV)或 3.6V。这最大限度地提高了电池充电器的效率,同时在电池深度放电时仍然允许即时接通工作。

  LTC4098 先进的超薄(典型值为 0.55mm)QFN 封装在印刷电路板相互堆叠的空间受限应用中使用有优势。这种封装可组成“体积”紧凑的解决方案,为系统设计师提供了灵活性。另外,该器件具有与更高的(0.75mm)前一代 QFN 封装相同的热性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top