微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌熺紒銏犳灍闁稿骸顦…鍧楁嚋闂堟稑顫岀紓浣哄珡閸パ咁啇闁诲孩绋掕摫閻忓浚鍘奸湁婵犲﹤鎳庢禍鎯庨崶褝韬┑鈥崇埣瀹曠喖顢橀悙宸€撮梻鍌欑閹诧繝鎮烽妷褎宕叉慨妞诲亾鐎殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倸螞椤撶倣娑㈠礋椤撶姷锛滈梺缁樺姦閸撴瑩宕濋妶鍡欑缁绢參顥撶弧鈧悗娈垮枛椤兘骞冮姀銈呭窛濠电姴瀚倴闂傚倷绀侀幉锟犲箰閸℃稑宸濇い鏃傜摂閸熷懐绱撻崒姘偓鎼佸磹閻戣姤鍤勯柤鎼佹涧閸ㄦ梹銇勯幘鍗炵仼闁搞劌鍊块弻娑㈩敃閿濆棛顦ラ梺钘夊暟閸犳牠寮婚弴鐔虹闁绘劦鍓氶悵鏇㈡⒑缁嬫鍎忔俊顐g箞瀵鈽夊顐e媰闂佸憡鎸嗛埀顒€危閸繍娓婚柕鍫濇嚇閻涙粓鏌熼崙銈嗗04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇洟姊绘担钘壭撻柨姘亜閿旇鏋ょ紒杈ㄦ瀵挳濮€閳锯偓閹风粯绻涙潏鍓хК婵炲拑绲块弫顔尖槈閵忥紕鍘遍梺鍝勫暊閸嬫挻绻涢懠顒€鏋涢柣娑卞櫍瀵粙顢樿閺呮繈姊洪棃娑氬婵炶绲跨划顓熷緞婵犲孩瀵岄梺闈涚墕濡稒鏅堕柆宥嗙厱閻庯綆鍓欐禒閬嶆煙椤曞棛绡€濠碉紕鍏橀崺锟犲磼濠婂啫绠洪梻鍌欑閹碱偄煤閵娾晛纾绘繛鎴欏灩閻掑灚銇勯幒鍡椾壕濠电姭鍋撻梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓05闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇牠姊绘笟鈧埀顒傚仜閼活垱鏅堕幍顔剧<妞ゆ洖妫涢崚浼存懚閺嶎灐褰掓晲閸噥浠╁銈嗘⒐濞茬喎顫忓ú顏呭仭闁规鍠楅幉濂告⒑閼姐倕鏋傞柛搴f暬楠炲啫顫滈埀顒勫春閿熺姴绀冩い蹇撴4缁辨煡姊绘担铏瑰笡闁荤喆鍨藉畷鎴﹀箻缂佹ḿ鍘遍梺闈浨归崕鎶藉春閿濆洠鍋撳▓鍨灈妞ゎ參鏀辨穱濠囧箹娴e摜鍘搁梺绋挎湰閻喚鑺辨禒瀣拻濞达絽鎳欒ぐ鎺戝珘妞ゆ帒鍊婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柣妯荤垹閸ャ劎鍘遍柣蹇曞仜婢т粙鎮¢姘肩唵閻熸瑥瀚粈鈧梺瀹狀潐閸ㄥ潡銆佸▎鎴犵<闁规儳澧庣粣妤呮⒒娴e憡鍟炴い顓炴瀹曟﹢鏁愰崱娆屽亾濞差亝鍊垫鐐茬仢閸旀碍绻涢懠顒€鈻堢€规洘鍨块獮姗€鎳滈棃娑欑€梻浣告啞濞诧箓宕滃☉銏℃櫖婵炴垯鍨洪埛鎴︽煕濞戞ǚ鐪嬫繛鍫熸礀閳规垿鎮欑拠褑鍚梺璇″枙閸楁娊銆佸璺虹劦妞ゆ巻鍋撻柣锝囧厴瀹曞ジ寮撮妸锔芥珜濠电姰鍨煎▔娑㈩敄閸℃せ鏋嶉悘鐐缎掗弨浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欓懞銉ュ攭濡ょ姷鍋涢敃銉ヮ嚗閸曨垰绠涙い鎺戝亰缁遍亶姊绘担绛嬫綈鐎规洘锕㈤、姘愁樄闁哄被鍔戞俊鍫曞幢閺囩姷鐣鹃梻渚€娼ч悧鍡欌偓姘煎灦瀹曟鐣濋崟顒傚幈濠电偛妫楃换鎴λ夐姀鈩冨弿濠电姴鎳忛鐘电磼鏉堛劌绗掗摶锝夋煠婵劕鈧倕危椤掑嫭鈷掑ù锝呮嚈瑜版帗鏅濋柕鍫濇嫅閼板潡姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹
首页 > 硬件设计 > 电源设计 > STS输入配电系统解决方案

STS输入配电系统解决方案

时间:05-12 来源:互联网 点击:

开关的品种,可大体分为三大类:

a)由可控硅所构成的三相、大功率STS静态开关(Static Transfer Switch)式的负载自动切换开关:其典型的标称输出电流有:60A、100A、160A、250A、400A、600A、800A、1000A和1200A的开关(注:少数厂家的STS产品是用在400V工作电压时的标称输出功率KVA来进行标注的);

b)由两组大功率的快速继电器构成的中功率、SS(SmartSwitch)智能式的负载自动切换开关(SS型开关):它包括三相25A和50A的开关及单相16A、25A和50A的开关;

c)由一个中间继电器所组成的小功率冗余开关(Redundant Switch)式的负载自动切换开关:其品种为:单相10A、16A(注:这是60Hz时的参数。如果在50Hz下运行时,其额定工作电流仅为:8A、13A)。

下面将以艾默生公司的STS型的静态开关为例,对三相、大功率的负载自动切换开关的工作特性进行分析和讨论。
  
3 大功率STS型负载自动切换开关(LTM开关)的工作原理

艾默生公司的STS-2型自动切换开关的控制框图被示于图2中。它是以“反向并联可控硅”为核心部件所组成的大功率的”静态开关”式的负载自动切换开关。有关它的各种工作特性将分析如下:

3.1 STS型自动切换开关的主控切换通道:

(1)自动切换供电通道:由输入电源1、外置断路器开关Ka、断路器开关CB1、STS1和公用输出开关CB3组成它的第1条供电通道。由输入电源2、外置断路器开关Kb、断路器开关CB2、STS2和公用输出开关CB3组成其第2条供电通道。其中的STS1和STS2”静态开关”均是由反向并联的”SCR可控硅”来构成自动切换开关的”可控交流供电通道”。当我们将输入电源1和输入电源2分别选定为LTM开关的“优先供电电源”和“备用电源”时,在来自逻辑控制板的SCR的栅极触发信号的调控下,STS1和STS2将分别处于”导通”状态和”关断”状态。在此条件下,输入电源1就将通过Ka、CB1、STS1和CB3通道向后接负载供电。反之,如果将输入电源2选定为它的“优先供电电源”时、输入电2就将通过Kb、CB2、STS2和CB3供电通道向后接负载供电。

(2)维修旁路供电通道:它是由两组带二匙二锁的”机电互锁”功能的CB1、CB2、CB3、CB4和CB5等断路器开关所组成的两条维修旁路来组成的。设置维修旁路的目的是:() 确保LTM开关在连续地向后接的网络设备供电的条件下,能对它内部的”STS功率切换”部件或”断路器开关” 等部件执行”脱机”式的更换操作; ()防止因”误操作”而致使两路交流输入电源同时被”误接通”、并进而造成在它的输出端出现”停电” 等不幸事故的发生(注:为进一步提高LTM开关的”容错”功能,艾默生公司还能提供带双”公共输出开关”CB3和CB3A的产品)。

(3)“热插拔”更换操作:为确保在向后接负载不间断地供电的条件下,能对“负载自动切换开关”执行“带电式”的“热插拔”操作。所有STS功率切换模块及断路器开关都用“可热插拔”的、模块化的设计方案。在此条件下,操作人员就可根据从它的LCD显示屏上所获得的故障信息、用“带电”式“热插拔”操作的办法、迅速和准确地更换掉相关的“有故障”的部件,从而达到缩短平均维修时间(MTTR)的目的。

3.2 STS型负载自动切换开关的逻辑控制部件:

为确保UPS双总线输出供电系统能获得“信息网络”级的高可靠性,在这种STS型负载自动切换开关的控制电路中用如下多重冗余设计方案来增强它的”容错”功能(见图3):

 i. 用全数字的DSP调控技术及CANBUS数字通信技术,大大地提高它的调控精度和响应速度;
 ii.为确保DSP芯片和可控硅驱动电路能稳定和可靠地运行, 对负责向它供电的直流辅助电源用下述的多重冗余设计方案:()由两路具有平均无故障工作时间高达230万小时的“N+1”UPS冗余并机系统+EMC输入滤波器所组成的电路向两套具有“双路交流输入端”供电特性的直流辅助电源1和2提供冗余式的“净化”电源。 ()从两套冗余式的直流电源所输出的两路DC电源以“双母线”的形式向3个逻辑控制板及可控硅驱动板提供它们所需的控制电源;
 iii.为确保SCR型“可控硅功率模块”能准确无误地运行,由3块逻辑控制板来共同对它提供”2+1” 冗余式的”栅极触发”调控信号;
 iv.为确保LTM开关能准确无误地执行切换操作,对于它内部的“2+1” 冗余式的逻辑控制板来说,还对“负载自动切换开关”的两路输入电源和输出电源的如下运行参数、执行不间断的高精度的监控及数据样操作:相序、频率、相位差、快速“过压及欠压”(脉宽4ms的瞬态浪涌/电压下陷)、缓慢“过压及欠压”、峰值电流Ipk、KVA、KW、Pf、直流电源的冗余度、风扇的冗余度等。
 v.为提高LTM开关的可靠性,在它的所有的“弱电”逻辑控制部件同“强电”功率部件之间的机械设计上、都用“分开隔离安装”的配置方案。对于这样的LTM开关来说,只要有一路输入电源工作正常,位于它内部的所有“可维护的电气部件均可在向负载连续供电的条件下、执行热插拔式的“更换”操作。

鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top