负载和不同输入电压对应不同的关闭时间,负载变轻时降低其开关频率,同时降低开关损耗。因此,使用这种方案的电源自然地提供极小的待机功率,并且优化其它负载条件下的能效。随着频率的下降,峰值电流逐渐降低至最大峰值电流的约30%,防止变压器机械工作共振。可听噪声的风险也大幅消除,同时还获得良好的待机能耗性能。
由于PWM控制器工作在准固定导通时间,开关频率随着负载而变化。在轻载条件下,此反激转换器工作在不连续导电模式(DCM)。负载增加时,频率也随之增加,直到控制器进入连续导电模式(CCM),而CCM优化用于提供极高的效率。
另外,在液晶电视应用中,实现良好的交叉稳压是一项设计挑战,因为容限非常严格(通常为±5%),且由于音频放大的大动态范围,以及信号处理电源负载根据输入视频源的不同而变化,动态工作可能大范围地变化。本参考设计基准型(SMPS1)的典型输出电压及负载范围是:
l +5 V:0至2.5 A
l +12 V:0至4 A
为了改善总体交叉稳压性能,+5 V二极管连接至绕组的地(GND),而+12 V绕组在5 V绕组之上。而在待机模式下,开关电源的频率工作在声频范围。因此,根据变压器构造及机械设计的不同,有可能出现一些可听见的噪声。大多数人最敏感的频率范围是7至13 kHz范围。本专用参考设计应用于50至75 mW的额定待机负载,故待机时的频率小于5 kHz。
本参考设计提供充足的灵活性,配合多种输出配置,而只须对BOM作简单调整。NCP1351B反激设计能够灵活的支持多达4个独特电压输出。本参考设计所使用的标准配置(SMPS1)拥有5 Vdc和12 Vdc输入,以及24 Vdc电压输出。表2中列出了多种可选配置,能够用于配合不同的电源机制。
高压背光逆变器电源段
1) 半桥与全桥拓扑结构比较
高压逆变器能够采用半桥或全桥拓扑结构实现。决定采用何种拓扑结构要考虑多项因素。与半桥结构引比,全桥拓扑结构拥有众多优势,如固定工作频率时零电压开关(ZVS)、降低EMI及功率损耗、减轻MOSFET开关应力及减少散热等。此外,在全桥拓扑结构下,由于控制器工作在固定频率,有可能将开关频率与视频频率同步,避免任何可能的背光子系统干扰影响视频图像。
2) LX6503背光控制器
本参考设计采用了Microsemi的LX6503背光控制器。LX6503是一款高性能CCFL控制器,旨在用于液晶电视及其它多灯LCD显示系统。它经过了特别优化,是用于高压逆变器架构的一种高性价比解决方案。这控制器提供一对推挽式(push-pull) PWM驱动信号,在增加简单的外部电路的情况下,具有足够的能力驱动推挽式半桥或全桥CCFL逆变器。
3) CCFL驱动及电流平衡
必须仔细考虑CCFL灯启动及电流平衡,从而拥有可靠的背光系统。本参考设计中使用的JIN平衡器(balancer)解决方案能够提供极佳的灯电流平衡功能,同时还结合频率扫描(frequency sweeping)j启动技术 ,确保可靠的灯启动。JIN平衡器基于平衡变压器的电磁耦合原理,产生额外的校正电压给灯,从而均衡灯电流。这平衡器网络的基本配置如图1所示。平衡器次级绕组的串行回路均衡了初级端电流,并提供灯电路之间的耦合机制。有了这样的耦合机制,如果其中某个灯未启动,已经启动的灯的能量将自动耦合至未启动灯电路的初级绕组,从而增加灯电压,帮助其启动。如图1所示,平衡器网络的绕线配置是一致的,而不管灯数量是多少。此外,一种类型的平衡器变压器能够适应几乎所有灯尺寸。这些特性使JIN平衡器解决方案能够非常灵活地用于CCFL逆变器应用。
32英寸液晶电视背光子系统的典型配置是:
- 12个灯
- 所有灯一起连接至共用地
- 系统电流感测在地线上
- 所有灯采用单输出高压变压器“同相(in phase)”驱动
总体能效性能及应用优势
本参考设计的重点在于以高能效的架构提供极佳的参数性能,这架构在所有电源转换段的工作损耗都较低。下面的表3中介绍了一些典型的性能数据,其中反激及PFC段的负载为不同测试负载条件下的负载。逆变器能效为估计值,因为直接在高压灯上精确地测量输出功率非常困难,而且精度不够高。在典型负载条件下,PFC在完整线路输入范围下的能效高于95%,反激转换器在37 W典型负载配置下的峰值能效为78%。顾及根据所采用的交叉稳压技术的不同5 V和12 V输出上出现的额外损耗,这个数值可谓相当不错。逆变器的能效得到的优化,这要归因于全桥零电压开关拓扑结构将开关损耗减至最小。支撑它的一项论据是这样的事实:全桥MOSFET使用表面贴装DPAK器件,不需要任何额外散热片。
总的来看,安森美半导体这款32英寸高压LIPS液晶电视电源参考设