微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 太赫兹科学技术的新发展

太赫兹科学技术的新发展

时间:12-13 来源:mwrf搜集整理 点击:

人们希望的一种THz源。但半导体器件的工作频率难于达到1THz以上,而半导体THz激光器,特别是THz量子级联激光器是目前的发展重点之一。第一篇关于量子级联激光的文章有Melvin Lax等发表于1960年,其后于1994年起,Bell实验室的J.Faist做了很多有益的工作(Science,264,22,1994)。在俄国这方面的工作也做了不少(Kazarinov,Sov.Phys.Semi.5,207,1971),但实验长期没有突破。朗讯曾把QCL作为一个研发重点,但没有结果。直至2002年由英国和意大利科学家获得突破(Nature 417,156-159,2002)。

量子级联激光器(QCL)是以异结构半导体(GaAs/AIGaAs)的导带中的次能级间的跃迁为基础的一种激光器。利用纵向光学声子的谐振产生粒子数反转。

2002年的结果是频率4.4THz,温度50K,脉冲功率20mW。

此后,很多国家都积极开展QCL的研究工作,采用了不同的材料。

到2004年,美国MIT最新的结果是:2.1 THz,CW功率lmW(温度93K),脉冲功率为20mW(温度137K)。

到2005年,MIT  QCL已经用于THz成像,可见THz技术发展的速度比我们想象的要快得多。

在我国,中国电子集团南京55所,渡越雪崩二极管可以做到0.1THz。中国科学院上海微系统研究所和中国科学院半导体研究所,已开展QCL的研究工作并已作出一定的成果。

半导体THz辐射源已安排了一个专题报告进行详细论述。

2、基于光子学的太赫兹辐射源

飞秒激光脉冲的发展给THz源带来了很大的机遇。已经发展了很多基于飞秒激光脉冲和非线性光学晶体的THz激光源。

如THz光导天线、光整流、非线性差频、THz参量振荡器和放大器(TPG,TPO,TPA)和光学Cherenkov辐射等等。

这种方法产生的THz辐射,可以是脉冲的,也可以是连续波的。

下图表示光脉冲通过非线性光学晶体产生THz辐射的典型情况。差频发生器(DEG),是一个三波混频非线性过程。

这方面的研究工作,我国天津大学等单位,也已开展了研究工作,并作出了一定的成果。详细内容将在专题报告中给出。

3、基于真空电子学的太赫兹源

近儿年来,随着THz科学技术的迅速发展,利用真空电子学产生THz辐射的研究工作取得了很大的进步,其中包括真空电子器件、电子回旋脉塞、自由电子激光、Cherenkov辐射,甚至使用储存环加速器来产生高亮度THz辐射。

某些真空电子器件如返波管(BWO)、扩展互作用振荡器(E1O)、绕射辐射器件(Orotron)等的工作频率己接近或达到1THz。

回旋管可望在1THz产生千瓦级的脉冲输出,平均功率可达几十瓦以上。

特别是由CIT的JPL实验室等研究的"纳米速调管"可望在1—3THz频率上工作。纳米速调管结合了电子学、光子学和微加工技术,是很有创新意义的一种新器件。

纳米速调管由于使用微加工技术,所以保证每个纳米速调管频率和相位的一致性,因此可以组成纳米速调管阵列,以大大提高输出功率。利用构成THz阵列辐射源是提高THz辐射功率的一个重要途径。

自由电子激光可工作于THz。自由电子激光的波长主要取决于摇摆器的周期和电子束的能量:
λ≈λω/4γγ=(1-β2-1  β=v/c
其中λw是摇摆器周期,γ是相对论因子。

今年1月13一14日,在美国Honolulu召开的THz辐射源研讨会上,报告了一篇用lMeV静电加速器的FEI,可以在2mm到500微米,(0.15—6)THz,产生lkW的准连续波输出,这一结果被认为是迄今为止最重要的成果之一。

2002年,在Nature上发表的另一篇论文体现了电子学和光子学相结合的方法。利用飞秒激光照射GaAs光学晶体,发射出电子束,再用加速器将电子束加速到40MeV。电子在磁场作用下作旋转运动从而发射出THz辐射,由于电子束的尺度远小于波长,所以辐射是相干的。实验结果可以得到20w连续波的THz辐射。所以,如前所述,Nature编辑部将这篇文章定为研究亮点。

我国真空电子器件已有相当好的基础,回旋管的研究工作已在电子科技大学和中科院电子所进行,在0.1THz已作出近100KW脉冲输出的回旋管。FEL己在中科院高能物理所、中国工程物理研究院、北京大学和电子科技大学进行,并取得一定的成果。

利用自由电子产生THz辐射的详细论述将在另一专题报告中给出。

五、太赫兹波段信号的检测

在THz波段的开发和利用中,信号的检测具有举足轻重的重要意义。因为,一方面,与较短波长相比,THz波段光子能量低,背景噪声常常占据显著的地位;另一方面,为了充分发挥THz系统的作用(例如,发现更微弱的目标、在更远的距离上通讯等等),不断提高接收的灵敏度也是必然的追求。

在不同的频率应选择

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top