提高高边电流测量的负载功率监视器
摘要:结合模拟电压倍增器,可以方便地测量显示在负载消耗的功率IC的高边电流检测放大器。一个乘法器输入连接到负载电压,和对方一内部模拟的负载电流,也就是说,一个成比例的电压由内部电流检测放大器生产。乘法器的输出(VLIL)是那么一个
图1。该电路采用了高侧功率/电流监控器(MAX4211),加上与外部参考电压来测量电池的充电电流的ADC。欲了解更多信息请登录电子发烧友网(http://www.elecfans.com)
该集成电路的乘数输出(功率输出)饲料16位ADC的输入电压范围为0V至VREF。 VREF时,由一个外部电压调节器在这里,应该介于1.2V和3.8V的(3.8V的在这种情况下)。乘法器输入必须限制在一个范围为0V至1V,这是分裂与R1/R2电阻分压器3.8V的参考电压来完成。 R2为1kΩ的假设和R1 =2.8kΩ,则当VIN = 1V的。该集成电路拥有25间VSENSE的和IOUT增益,从某种意义上讲电压范围(VSENSE的)的0V至150mV的,它产生(在两个功率输出和IOUT)范围中的一个为0V输出为3.75V。
因此,功率输出使用(而不是输出电流)赋予的优势:ADC,这是成正比的负载电流信号,通过VREF的缩放。下面的公式涉及的功率输出,/到ILOAD的,RSENSE的,和R1和R2的值VREF的比例:
功率输出/的VREF = ILOAD的× × 25 × RSENSE的VREF的× R2的/(R1的右二)/的VREF = ILOAD的× × 25 × RSENSE的R2的/(R1的右二)
请注意,ADC的输入到ADC的满量程(功率输出/ VREF)的比例并不取决于VREF的精度。
当前测量总体精度取决于许多因素:电阻容差,放大器增益误差,电压偏移和偏置电流,参考电压精度,ADC的错误,并与所有上述温度漂移。该电路只提高了消除这些问题的原因,一个不准确的参考电压的精度。 VREF是受到至少三种误差来源:
初步直流误差为标称值的百分比
VREF的变化与负载
随温度变化的VREF
一个乘数的输入(IN)的温度曲线图,VCC = 5V时和VSENSE的常数为100mV,显示了温度对参考电压(图2)的影响。要看到,在功率输出,输出比例的优势,比较功率输出/ VIN的比例及其与输出电流/ Vin比理想的线性,其线性理想,因为它们与温度(图3)各不相同。请注意,比例功率输出,输出(上)不偏离。
图2。 VIN的温度曲线为图1电路
图3。功率输出/ VIN和输出电流/ VIN的对比图1电路的温度,与VSENSE的= 100mV的
- 专用于便携设备电源管理的超小型降压转换器(06-29)
- 级联低压差稳压器SMPS(07-12)
- 基于DSP的单相精密电源硬件设计(07-24)
- WiFi 收发器的电源和接地设计(08-12)
- 微安级数控恒流源的设计(08-20)
- 新一代手机电源管理的最佳化挑战(08-30)