隔离式DC/DC 变换器的电磁兼容设计
扰电磁场的频率较高时,选用高电导率的金属材料,屏蔽效果较好;当干扰电磁场的频率较低时,选用高磁导率的金属材料,屏蔽效果较好;在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用高电导率和高磁导率的金属材料组成多层屏蔽体。 2)孔洞、缝隙、搭接处理方法采用电磁屏蔽方法无须重新设计电路,便可达到很好的电磁兼容效果。理想的电磁屏蔽体是一个无缝隙、无孔洞、无透人的导电连续体,低阻抗的金属密封体,但是,开关电源需要有输入、输出线过孔、散热通风孔等,以及箱体结构部件之间的搭接缝隙,如果不采取措施,这些孔洞和缝隙将会导致电磁泄漏,使箱体的屏蔽效能降低、甚至完全丧失。因此,在设计开关电源箱体时,金属板之间的搭接最好采用焊接,无法焊接时要使用电磁密封垫或其它的屏蔽材料;箱体上的开孔孔径要小于被屏蔽的电磁波波长的1/2,否则屏蔽效果将大大降低;对于通风孔,在屏蔽要求不高时可以使用穿孔金属板或金属化丝网,在既要求屏蔽效能高,又要求通风效果好时选用截止波导管等方法,以提高屏蔽体的屏蔽效能。如果箱体的屏蔽效能仍无法满足要求时,可以在箱体上喷涂屏蔽漆。除了对开关电源整个箱体的屏蔽之外,还可以对电源设备内部的元器件、部件等干扰源或敏感设备进行局部屏蔽。 3)其他在进行箱体结构设计时,针对设备上所有会受到静电放电影响的部分,须设计一条低阻抗的电流泄放路径,箱体必须有可靠的接地措施,并且要保证接地线的载流能力,同时,将敏感电路或元器件布置得远离这些泄放回路,或对其采用电场屏蔽措施。对于结构件的表面处理,一般需要电镀银、锌、镍、铬、锡等,具体要从导电性能、电化学反应、成本及电磁兼容性等多方面考虑后做出选择。 3.8 元器件布局与布线中的电磁兼容设计 对于开关电源设备内部元器件的布局必须整体考虑电磁兼容性的要求,设备内部的干扰源会通过辐射和串扰等途径影响其它元器件或部件的正常工作,研究表明,在离干扰源一定距离时,干扰源的能量将大大衰减,因此,合理的布局有利于减小电磁干扰的影响。 EMl输入输出滤波器最好安装在金属机箱的入出口处,并保证输入与输出线的屏蔽隔离。 敏感电路或元器件要远离发热源。 对于开关电源产品,一般须遵守以下布线原则。 1)主电路输入线与输出线分开走线。 2)EMI滤波器输入线与输出线分开走线。 3)主电路线与控制信号线分开走线。 4)高压脉冲信号线最好分开单独走线。 5)分开布线要避免平行走线,可以垂直交叉,线束之间距离在20mm以上。 6)电缆不要贴着金属外壳和散热器走线,保证一定距离。 7)双绞线、同轴电缆及带状电缆在EMC设计中的使用。 (1)双绞线、同轴电缆都能有效地抑制电磁干扰在脉冲信号传输线路中常使用双绞线,控制辅助电源线和传感器信号线最好用双绞屏蔽线。因为双绞线两根线之间有很小的回路面积,而且双绞线的每两个相邻的回路上感应出的电流具有大小相等、方向相反,产生的磁场相互抵消,这样就可以减小因辐射引起的差模干扰,不过双绞线绞合的圈数最好为偶数,且每单位波长所绞合的圈数愈多,消除耦合的效果愈好。使用时注意双绞线和同轴电缆两端不能同时接地,只能单端接地,而对屏蔽线,屏蔽层两端接地能既能屏蔽电场还能屏蔽磁场,单端接地只能屏蔽电场。使用同轴电缆时还要注意,其屏蔽层必须完全包覆信号线接地,即接头与电缆屏蔽层必须360。搭接,才能有效屏蔽电磁场,如图8所示,信号线裸露部分仍可以与外界形成互容耦合,降低屏蔽效能。 (2)带状电缆适合于短距离的信号传输为了降低差模信号的电磁辐射,必须减小信号线和信号回流线所形成的回路面积,因此,在设计带状电缆布局时,最好将信号线与接地线间隔排列。如图9所示,其中S为信号线,G为信号地线。 3.9元器件的选择 热传播的方式有三种,即传导、对流和辐射。热辐射是以电磁波的形式向空间传播的,热传导也会向周围其它元器件传导热量,这些都会影响其它元器件或电路的正常工作,因此,从元器件热设计方面考虑要尽量留有较大余量,以降低元器件的温升及器件表面的温度,除元器件对温升有特殊要求外,一般开关电源要求内部元器件温度小于90℃,内部环境温度不超过65℃,以减4、热辐射干扰。 对数字集成电路,从电磁兼容性角度看,应多选用高噪声容限的CMOS器件代替低噪声容限的TTL器件。 尽量使用低速、窄带元器件和电路。 选用分布电感较小的表面贴装元器件(SMD),选用高频特性好、等效串联电感低的陶瓷介质电容器、高频无感电容器、三端电容器和穿心电容器等作滤波
隔离式DC DC变换器、电磁兼容性、电磁干扰、电磁敏感度 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)