防雷器在电源系统中的应用
设备的空间,所有穿过通常具有空间屏蔽的防雷区的导线,在穿过防雷区界面同时接有防雷器。也就是说,防雷器应安装在防雷区的界面处,以符合防护的层次性原则,末级防雷器则应靠近设备安装,设备外壳实际上也提供了一个防雷保护区的交界处。另外,防雷器的保护范围是有限的,一般防雷器与设备线路距离超过10m以上将使防护效果劣化,这是因为防雷器和需要保护的设备之间的电缆上有反射造成的振荡过电压,其辐值与线路长度、负载阻抗成正比。
(3)在使用电源防雷器的多级防护中,如果不注意能量分配,则可能引入更多的雷电能量进入保护区域。这要求用于第一级的防雷器根据前述评估模式估算,其通流能力要求较大,而后续防雷器的通流能力可逐级减少。
S实现能量分配的要点在于利用两级防雷器之间线缆本身的感抗。线缆本身的感抗有一定的阻碍雷电流作用,使雷电流更多地被分配到前级泄放。
S一般要求两级防雷器之间线缆长度在15m左右,适用于保护地线与其它线缆紧贴敷设或处于同一条电缆之内的情况。
S线缆上分支线路的长度对线缆要求长度有影响,适用于保护地线与被保护线缆有一定距离(>1m),这时要求线缆长度大于5m即可。
S在一些不适合采用线缆本身作退耦措施如两级防雷区界面靠近时,可利用专门的退耦器件,这时无距离要求。
(4)电压配合是通过各级防雷器限制电压值的逐级控制,最终将过电压值限制在设备允许范围内。一般防雷器都有通过雷电流越大,残压越高的特点,通过能量分配后末级防雷器流过的雷电流极小,有利于电压限制。
S在一条线缆上的过电压通过电压配合一级级降低,这要求防雷器的残压逐级减少。
S在流过同样雷电流的情况下,防雷器的残压与其响应电压有关,注意在这种情况下,不考虑电压配合而仅仅选择低响应电压的防雷器作末级保护是危险的。比如末级防雷器响应电压过低导致其响应提早,从而引入的雷电流增大,响应残压会过高。
S实现电压分配的要点在于利用线缆本身的分压作用,对其长度要求与能量分配一致。
S在一些不适合采用线缆本身作退耦措施如线缆长度较短时,可利用专门的退耦器件,这时无距离要求。
(5)退耦器件是实现能量分配与电压配合的重要措施,以下几种材料可作为退耦器件:线缆、电感、电阻。
串并式电源防雷器就是一种考虑了能量分配与电压配合,利用滤波器作为退耦器件的防雷器组合形式,适合于各种场合的应用。
(6)在某些极端情况下,装上防雷器反而会增加设备损坏的可能,必须杜绝这类情况发生。
S防雷器保护几条线,其中一条线上的防雷器失效或响应速度过慢。比如当雷电来临时,L、N两条线与地之间的电位被抬高。当有一条线的防雷器失效或响应速度过慢,如L相防雷器失效,则N相电位被拉下,而L相还处于高电位,使共模干扰转化为差模干扰而损坏设备。这要求必须实施多级保护及注意防雷器的维护。
S不考虑防雷保护区、能量配合、电压分配而随便安装防雷器,比如仅仅在设备前端装设一只防雷器,由于没有前级保护,强大的雷电流将被吸引到设备前端,致使防雷器残压超过设备绝缘强度。这要求防雷器必须按层次性原则安装。
(7)在另外一些情况下,错误的安装将使设备得不到有效保护。
S过长的防雷器连接线。根据雷电流在连接线上产生电压的式子U=L·di/dt,假如接地线长达到5m,20kA(8/20μs)雷电流通过防雷器时,防雷器两端电压被限制在1kV,而连接线上由感抗引起的电压却达到了3.8kV,使得总的残压达到了4.8kV。这时,防雷器是工作了,但加在设备上的仍是危险电压,这个问题在未级防雷器的应用中更加明显。
解决这个问题的方法是采用短的连接线,一般电源防雷器连线长度要求在25cm之内。当连接线长度超过该值时,可以采用两根以上分开的连接线以分担磁场强度,减少压降,单纯加粗连接线是没有什么效果的。
必要时可通过改变被保护线的布线,使其靠近等电位连接排(接地点)以减少连接线长度。
S防雷器输出线和输入线、接地线靠近、并排敷设。这种情况对串并式防雷器的影响比较严重。当串并式电源防雷器的输出线(已保护的线)和输入线(未保护线)、地线靠近敷设,会使输出线内感应出瞬态浪涌,虽然其强度较原来为小,但仍可能是危险的。
解决这个问题的方法是输入线、地线与输出线分开敷设或垂直敷设,尽量减少并行敷设的长度,拉开敷设的距离。
S防雷器接地线没有与被保护设备的保护地相连,即采取单独的防雷接地。假设防雷器泄放20kA雷电流,不计防雷器限制电压,防雷接地电阻即使是1Ω,在设备保护地与进线之间仍会产生20kV的危险
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)