多电平逆变器有源软开关技术的研究
平衡由辅助电流iaux1和iaux2的方向、大小和持续时间来 () 决定。只有当输出电流和输出电压之间的相移在±90°附近时,即负载是纯无功负载时,对于辅助电流iaux1和iaux2来说,它们分别流入中点1和中点2的电流的安秒值在一个输出周期内才相等。在其它情况下,中点将会产生偏移。因此在二极管箝位型三电平辅助谐振变换极逆变器中,由于存在两个相互独立的中点,充电平衡所带来的中点稳定的问题是不可避免的。 2)辅助开关的反并二极管关断时由于其反向恢复特性在辅助开关两端将造成过电压,虽然各种各样的减少过电压的方案被提出,但是都大大增加了电路的复杂性。 表1概括和比较了上面三种三电平辅助谐振变换极软开关拓扑的元器件参数特性。 表1三种电路拓扑元器件参数的比较比较参数图3图4图5 拓扑的讨论 文献[6][10]把二极管箝位型三电平辅助谐振变换极软开关拓扑的概念扩展到N电平逆变器。显然,N电平辅助谐振变换极软开关拓扑仍然存在中点稳定的问题;而且,附加元器件的数量也大为增加;系统的可靠性,控制的复杂性也阻碍了把N电平辅助谐振变换极软开关拓扑应用到工业中去。需要强调的是,N电平辅助谐振变换极软开关拓扑中点稳定性问题不是由于元器件参数的波动或寄生参数的影响而造成的,而是因为电路拓扑本身的缺点而造成的。不难得出,N电平辅助谐振变换极软开关的中点稳定性问题和拓扑的复杂性使该电路拓扑应用到实际的工业系统中去的可能性很小。 3电容箝位型多电平逆变器的有源软开关技术 迄今为止,有关电容箝位型多电平逆变器的有源软开关技术的研究非常有限。文献[7]和文献[11]把辅助谐振变换极软开关的概念引入到电容箝位型多电平逆变器当中。 3.1电容箝位型三电平逆变器的辅助谐振变换极软 开关拓扑 文献[11]提出的电容箝位型三电平逆变器的辅助谐振变换极软开关拓扑如图6所示。 该电路的辅助开关接在直流母线的正极和负极之间,谐振电感Laux和电容C1、C2、C3、C4组成谐振路径。该电路有个致命的弱点,即辅助开关所承受的阻断电压等于Udc,这就使该电路失去了实际应用的意义。 文献[7]提出了另外一种电容箝位型三电平逆变器的辅助谐振变换极软开关拓扑如图7所示。一个辅助开关连接在输出端(经Laux2)和箝位电容的中点,另外一个辅助开关连接在箝位电容的中点(经Laux1)和直流环节的中点。该电路的辅助开关所承受的阻断电压仅为Udc/4。和二极管箝位型三电平逆变器的辅助谐振变换极软开关拓扑相比,此电路的两个中点(1和2)的电压是稳定的。箝位电容的中点由辅助电流来决定,每隔一个开关周期辅助电流交替改变方向,并不受功率因数的影响。该电路采用了硬开关电容箝位型三电平逆变器中为稳定箝位电容电压所采用的方法,即交替利用三电平变换器的两个可能的零状态,使箝位电容的中点电压趋于稳定。此外,输出电流每隔180°,辅助电流iaux1和iaux2的方向改变一次,用来平衡由于调制策略和功率因数造成的输出电流的不对称。由于在三相系统中,输出电流是三相对称的,因此直流环节中点可以按照传统的两电平辅助谐振变换极电压源型逆变器的中点稳定的方式来趋于稳定。 但是,该电路存在以下缺点: 多电平逆变器有源软开关技术的研究 1)和二极管箝位型三电平逆变器的辅助谐振变换极软开关拓扑一样,辅助开关的反并二极管关断时由于其反向恢复特性在辅助开关两端将造成过电压。 2)对寄生电感参数很灵敏,处理不好,会引起寄生震荡。 3.2电容箝位型N电平辅助谐振变换极软开关拓 扑的讨论 文献[7]把电容箝位型三电平逆变器的辅助谐振变换极软开关拓扑拓展到了电容箝位型N电平逆变器中,如图8所示。所有辅助开关的阻断电压都相等,都等于Udc/〔2(N-1)〕。表2是N电平辅助谐振变换极软开关的主要特性。 表2电容箝位型N电平逆变器的辅助谐振 变换极软开关的主要特性主开关辅助开关
图6电容箝位型三电平逆变器的辅助谐振变换极软开关拓扑
图7电容箝位型三电平逆变器的辅助谐振变换极软开关拓扑
辅助开关数量121212
阻断电压0.75Udc0.5Udc0.5Udc
峰值电流相对值100%100%100%
箝位开关箝位二极管/箝位开关6/06/06/6
阻断电压0.5Udc0.5Udc0.5Udc
吸收电容数量91212
电压应力0.5Udc0.5Udc0.5Udc
RMS电流相对值6×100%3×141%12×100%12×100%
谐振电感数量366
RMS电流相对值100%70.7%70.7%
2.3二极管箝位型N电平辅助谐振变换极软开关
图8电容箝位型N电平逆变器的辅助谐振变换极软开关拓扑
数量3×2(N-1)3×(N-1)
阻断电压Udc/(N-1)Udc/〔2×(N-1)〕
软开关类型零电压开关零电流开关
电容箝位型N电平逆变器的辅助谐振变换极软开关拓扑目前只是在理论上作了一些探讨,中点平衡问题需要作进一步的研究,应用到实际当中,还有很多工作要做。
- 无线充电物理技术分析(12-09)
- 飞轮储能技术在UPS系统中的应用(12-09)
- 基于DDS技术的实用信号源的设计(二)(12-09)
- 基于DDS技术的实用信号源的设计(一)(12-09)
- 电源技术基础:有效减少开关损耗的“软开关”技术(12-09)
- 关于电子信息技术中信号源的设计与制作(12-09)