德州仪器TPS5430实例应用-便携式B超电源设计
5430的输出电压值是由其4脚的分压电压值决定的,输出电压Vout=(1.221+(R1×1.221)/R2)V。其中,R1是分压上电阻,R2是分压下电阻。对于5430的设计,R1可以取10kΩ,R2则能根据要获得的输出电压来计算。根据图4给出的R206(1.11K)、R208(3.07K)、R210(5.36K),我们可以计算出输出电压分别是12.2V、5.2V、3.5V,比设计值略高0.2V,负载比较重,带载的时候电压正好合适。
N208(LM2576-12)是美国国家半导体的产品,1脚是电源供电端,接Power+;2脚是输出端,外接续流二极管和电感;3脚是接地端,5脚是电源ON/OFF控制端,由于要输出负电压,因此3、5脚没有接地而是接-12V电源上了;4脚是电压反馈端,我们使用固定12V输出的LM2576-12,故4脚接地,不需要接反馈电阻分压。
高压电源电路的设计
便携B超高压电源电路如图5所示,使用DC/DC变换器。UA3843是专门用于DC/DC变换器应用的高性能、固定频率、电流模式控制器,为设计者提供使用最少外部元件的高性价比的解决方案。其分PWM控制、周波电流限制、电压控制等几部分。
图5 ±48V电源电路
1 PWM控制
POWER+经过电阻R34为N1(UA3843)的7脚提供电压,N1的4脚外接R36、C33与内部电路形成的锯齿波振荡器开始工作。PWM脉冲由N1的6脚输出,控制MOSFET V9的导通时间,决定输出电压的高低。R37用于抑制寄生振荡,通常串联在靠近MOSFET栅极处。栅极电阻R37不能太大,它直接影响PWM驱动信号对MOSFET输入电容的充放电,即影响MOSFET的开关速度。开关变压器的次级第9、10脚输出的感应电动势经VD14整流,C35、L7、C36滤波,形成+48V直流输出电压为B超探头供电。开关变压器的次级第7、6脚输出的感应电动势经VD13整流、C39、L8、C37滤波,形成-48V直流输出电压为B超探头供电。VD12、C34、R38组成尖峰脉冲吸收电路,用于在开关管从导通转为截止的瞬间抑制V9的漏极所产生的幅值极高的尖峰脉冲。其原理是:在V9截止的瞬间,其漏极产生的尖峰脉冲经VD12、C34构成充电回路,充电电流将尖峰脉冲抑制在一定的范围内,避免了V9被尖峰脉冲击穿。当C34充电结束后,C34通过R38放电,为下个周期再次吸收尖峰脉冲作准备
2 周波电流限制
2脚FEED BACK是反馈电压输入端,此脚与内部误差放大器同相输入端的基准电压(一般为+2.5V)进行比较,产生控制电压,控制脉冲的宽度,本电路将其接地,由内部误差放大器的输出端1脚进行控制。3脚的周波电流限制信号决定了PWM脉冲的宽度, 即决定了输出电压的高低。N1(UA3843)3脚外接的R47、R48、R14、C32组成周波电流限制电路,在每一个振荡周期中,当开关电源脉冲变压器L6初级的3~5绕组电感电流峰值达到设定值时就关闭PWM脉冲,设定值由N1(UA3843)的1脚COMP端电压决定(1脚COMP是内部误差放大器的输出端),通常此脚与2脚之间接有反馈网络,以确定误差放大器的增益和频响。周波电流限制控制过程如下:开关管导通,电感电流上升,取样电压V3上升,当3脚电压大于1V时,内部电流检测比较器翻转,内部PWM锁存器复位,关闭PWM脉冲,准备进入下周期。为消除电流限制电路尖波脉冲干扰,由R14、C32组成尖波滤波电路,以确保周波电流限制功能在每一个振荡周期中都有效。R47、R48为限流取样电阻,决定了整个开关变换器的最大输出电流值,改变其阻值可以调整最大输出电流。
3电压控制
N1(UA3843)是电流型脉宽调制器,有两个闭环控制。电流取样信号送到电流检测比较器同相输入端3脚,构成电流闭环控制,误差电压送到内部误差放大器的输出端1脚,其输出送到电流检测比较器反相输入端作为比较基准,构成电压闭环控制。由此看出,电压闭环与电流闭环是相互作用的,两者最后都通过电流检测比较器来控制PWM锁存器,即控制PWM脉冲的宽度。电压闭环控制电路由电压基准N2(TL431A)、光电耦合器B4(TLP521)及电阻R31、VR7、R12、R32等元件组成。光电耦合器B4(TLP521)输出的电流信号转化成电压信号,送到内部误差放大器的输出端1脚。N2(TL431A)误差放大器内部比较基准为2.5V。电压闭环稳压控制过程是:输出电压上升,TL431A基准端VR上升,TL431导通上升,光电耦合器B4(TLP521)导通上升,1脚电压下降,内部电流检测比较器翻转提前,内部PWM锁存器复位提前,PWM脉冲变窄,输出电压变低,从而稳定了输出电压。高压输出电压值VOUT=(1+R31/(R12+VR7))Vref,通过调节电位器VR7的值,可以使输出调整在±48V,调节范围是31×2.5=77.5V~(1+15)×2.5=32V。
结语
本文介绍了便携式B超电源的设计,包括电源切换电路的设计、单键触摸开关机电路的设计、低压电源电路的设计
B超电源 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)