微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 电机变频调速系统的调试与故障分析

电机变频调速系统的调试与故障分析

时间:08-09 来源:互联网 点击:

为直接变频和间接变频两大类。间接变频将工频电流通过整流器变成直流,然后再经过逆变器将直流换成可控频率的交流。直接变频器则将工频交流变换成可控频率的交流,没有中间环节。它的每相都是一个两相晶闸管整流装置反并联的可逆线路。正反两组按一定周期相互切换,在负荷上就获得了交变输出电压,其幅值决定于各整流装置的控制角,频率决定于两相整流装置的切换频率。目前应用较多的还是间接变频器。间接变频器有三种不同的结构形式:(1)用可控整流器变压,用逆变器变频,调压调频分别是在两个环节上进行,两者要在控制电路上协调配合。(2)用不控整流器整流斩波器变压、逆变器变频,这种变频器整流环节用斩波器,用脉宽调压。(3)用不控整流器整流,PWM(Pulse Width Modulation,脉冲宽度调制)逆变器同时变频,这种变频器只有采用可控关断的全控式器件(加绝缘栅双极晶休管IGBT等)输出波形才会非常逼真的正弦波。

无论是哪一种的变频器,都大量使用了晶闸管等非线性电力电子元件。不管采用哪种整流方式,变频器从电网中吸取能量的方式均不是连续的正弦波,而是以脉动的断续方式向电网索取电流,这种脉动电流和电网的阻抗共同形成脉动电压降叠加在电网的电压上,使电压发生畸变,经傅里叶级数分析可知,这种非周期正弦波电流是由频率相同的基波和频率大于基波频率的谐波组成。

3.2 谐波的处理方法

为了消除谐波,主要采用以下对策:

(1)增加变频器供电电源内阴抗 通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小,内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大,则内阻抗值相对越小,谐波含量越大。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

(2)安装电抗器 安装电抗器实际是从外部增加变频器供电电源的内阻抗。在变频器的交流侧或变频器的直流侧安装电抗器或同时安装,可抑制谐波电流。

(3)变压器多相运行 通常变频器的整流部分是6脉波整流器,所以产生的谐波较大,应用变压器的多相运行,如使相位角互差30°的Y-Δ、Δ-Δ组合的2台变压器构成相当于12脉波整流器,则可减小谐波电流,起到谐波抑制作用。

(4)调节变频器的载波比 提高变频器载波比,可有效抑制低次谐波。

(5)应用滤波器 滤波器可检测变频器谐波电流的幅值和相位,并产生与谐波电流幅值相同、相位相反的电流,从而有效地吸收和消除谐波电流。四、振动与噪声产生的原因与处理方法

4.1 振动与噪声产生的原因

变频器工作时,输出波形中的高次谐波引起的磁场对许多机械部件产生电磁策动力,策动力的频率总能与某些机械部件的固有频率相近或重合,导致共振。对振动影响大的高次谐波主要是较低次的谐波分量,在PAM(Pulse Amplitude Modulation,脉冲幅度调制)方式和方波PWM方式时有较大的影响。但采用正弦波PWM方式时,低次的谐波分量小,影响变小。

用变频器传动电动机时,由于输出电压电流中含有高次谐波分量,气隙的高次谐波磁通增加,故噪声增大。电磁噪声有以下特征:由于变频器输出中的低次谐波分量与转子固有机械频率谐振,则转子固有频率附近的噪声增大。变频器输出中的高次谐波分量与铁心机壳轴承架等谐振,在这些部件的各自固有频率附近处的噪声增大。

变频器传动电动机产生的噪声特别是刺耳的噪声与PWM控制的开关频率有关,尤其在低频区更为显著。

采用变频器调速,将产生噪声和振动,这是变频器输出波形中含有高次谐波分量所产生的影响。随着运转频率的变化,基波分量、高次谐波分量都在大范围内变化,很可能引起与电动机的各个部分产生谐振等。

4.2 振动与噪声的处理方法

减弱或消除振动的方法,可以在变频器输出侧接入交流电抗器以吸收变频器输出电流中的高次谐波电流成分。使用PAM方式或方波PWM方式变频器时,可改用正弦波PWM方式变频器,以减小脉动转矩。为防止电动机与负载相连而成的机械系统振动,必须使整个系统不与电动机产生的电磁力谐振。

一般采用以下措施抑制和减小噪声:在变频器输出侧连接交流电抗器。如果电磁转矩有余量,可将U/f定小些。采用特殊电动机如在较低频的噪声音量较严重时,则要检查与轴系统(含负载)固有频率的谐振。

五、变频器发热产生的原因与处理方法

5.1 变频器发热产生的原因

变频器发热是由于内部的损耗而产生的,以主电路为主,约占98%,控制电路占2%。

5.2 变频器发热的处理方法

(1)采用风扇散热 变频器内装风扇可将变频器箱体内的热量带走。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top