微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 用于LED路灯的高效率电源驱动器设计方案

用于LED路灯的高效率电源驱动器设计方案

时间:08-08 来源:互联网 点击:

感器CT 的两个绕组, 其中, 初级绕组CT1 被串在主电路中, 用于检测流经Mos 管的电流。当CT1 中的电流下降到零时, CT2 将把M1 关断。因此, 此方案以电压信号控制Mos 管导通, 电流信号控制Mos 管关断, 不仅效率高, 而且工作稳定, 不存在误开通的情况。下面将对这种驱动方案的工作过程做详细分析。

  1) 第一阶段, 变压器一次侧Mos 管关断, 电流从变压器的一次侧换流到二次侧。T3 绕组通过CT1 , M1 为输出电容器C3 充电。T3 绕组的输出电压被钳位于C3 两端电压(在本应用中约为52V) 。

  由于T4 绕组为变压器的一个辅助绕组, 因此, 同名端B 点的电压比例上升至一个高电压(在此应用中约为10V) 。则B 点电压通过二极管D2 为电容器C1、C4 充电。其中, 电容器C4 为Mos 管M1 的门极输入电容, 通常小于1nF , 以虚线示出。电容器C1为外加电容, 取C4 电容值的10 倍以上。由于C4 远小于C1 , 并且电容值很小, 根据电容器的串联分压原理, C 点电压很快被充至近10V , M1 导通。同时, 电流互感器CT 中的能量从绕组CT2 通过二极管D1 馈入输出电容器C3 , 降低了开关驱动损耗,D 点电压也被钳制在约52V。

2) 第二阶段, 流经D1 的电流降为0 , 此时流经CT1 的电流降为Ioff 。D1 关断, D 点电压开始降低, 最终使PNP 型三极管Q1 导通, C4 上的电被放掉, C 点变为低电压, M1 关断, 同步整流结束。由于此时Ioff > 0 , 变压器二次侧的充电过程仍未结束,改经M1 的寄生体二极管续流, A 点、B 点仍为高电压。由于C4 被Q1 短路, T4 通过D2、Q1 为C1 充电, 直到C1 被充满。值得注意的是, C1 之所以选用电容而不使用电阻, 一方面保证了第一阶段中对C4 的快速充电, 另一方面使得第二阶段中Q1 导通后在其上的损耗得以降低, 提高了驱动的效率。

  3) 第三阶段, 变压器一次侧Mos 管再次导通,A 点、B 点为负电压, PNP 三极管Q2 导通, C1 被放电, 保证了下一周期能够再次正常工作。C 点电压保持在低电压, 不会造成M1 的误开通。值得注意的是, 在每个周期中, C1 都会被反复冲放电。其损耗由公式P = 1/2 CU2 f 可得。其中, 设C = 10nF ,U = 10V , f = 100kHz。因此P = 50mW, 此即在C1上损耗的功率。当变压器一次侧Mos 管在一段时间后再次关断后, 新的一个周期开始。

  这种新型的同步整流方案具有如下特点: 1) 可以广泛适用于各种输出电压。2) 电路结构和原理较为简单。3) 驱动损耗小, 效率高。4) 电路确定性好, 无误动作。电路在PSpice 下的Mos 管电流波形和门极驱动电压波形的仿真结果如图4 所示。

图4  Mos 管电流波形和门极驱动电压波形的Pspice 仿真结果

  2.4  变压器设计

  高频变压器作为隔离型电源中必不可少的组件,在提升效率方面所起的作用也是不容忽视的。变压器的损耗主要分为铜损、铁损及漏感造成的损耗三大块。

  铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时, 一部分电能就转变为热能而损耗。在低频时, 变压器的铜损主要是铜导线的直流电阻造成的, 但工作在50kHz~100kHz 的高频电源变压器则必须考虑到集肤和邻近效应。为减小两者带来的交流铜阻变大的现象, 可以采取用里兹线替代单股粗铜线绕制变压器, 一次侧线圈与二次侧线圈交错绕制等方法。

  铁损即磁芯损耗, 包括磁滞损耗、涡流损耗和残留损耗。其大小由公式Pc = Kp ×Bn ×f m ×vol所决定。其中, B 为铁芯中的工作磁感应强度, f 为工作频率, vol 为铁芯体积。Kp , n , m 则为与铁芯材料有关的常数。要减小铁损, 可以在增加线圈匝数的同时增大气隙, 以此来减小工作磁通, 但最根本的措施还是选用更好的磁芯材料。

  另外要使铁损与铜损之和最小, 必须满足以下两个条件: 1) 铁损= 铜损。2) 原边铜损= 副边铜损。

  变压器损耗的另一重要组成部分则是由漏感造成的。漏感Lσ 上损耗的功率由公式P = 1P2LσI2 f确定。其中, I 为变压器一次侧的峰值电流, f 为开关频率。漏感的存在使初级Mos 管上需要承受更大的电压应力。而在反射电压一定的条件下, 漏感越大, 则变压器的效率越低 。要减小变压器的漏感, 需要从铁芯结构的选取, 气隙的位置, 绕组绕制的方式等方面综合考虑。

近年来, 平面变压器作为一种新的变压器技术正在日趋成熟。该变压器使用的是高度较低, 底部面积较大的平面磁芯。同常规的漆包线绕组不同,该变压器的绕组是利用印制板上的螺旋形印制线来实现的。与传统变压器相比, 平面变压器具有效率高、工作频率高、体积孝漏感孝热传导

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top