微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 便携式设备电池管理策略与应用设计

便携式设备电池管理策略与应用设计

时间:08-27 来源:互联网 点击:

对输出电压稳定性的要求、效率(即预期负载条件下的工作时间是多少)和尺寸限制等。从成本、效率综合来讲,MAX711是3V输出电源的一个选择(可从1.8V起工作)。另外两组电源的选择余地较大,如MAX1677、MAX1817等都可以。如果5V或12V要求的输出电流畸小,或者某组输出对稳定性的要求不高,还可以考虑其它的组合解决方案。

Q6:采用碱性电池供电的超低功耗LDO电路设计咨询。

大家好,我们现在设计一款产品,需要采用四个碱性电池供电驱动小电机,并采用一个LDO降压给芯片使用。其中电池电压是6V左右,IC电压是3。3V,现在选用了一款GM6250的LDO,他的待机电流是1uA,那么我们应该选用什么样的电容,保证小电机启动瞬间不会造成LDO输出过大的波动,以及保证纯粹休眠待机时候漏电最少。我们希望电容漏电也就1uA左右吧,小电机启动瞬间工作电流有1A,然后快速下落到200ma左右。

A6:电容漏电不是问题,几乎任何一般的电容都不会有太大的漏电。但是电容大了以后LDO会不稳定。靠加电容解决不了电压下降的问题,只有巨大的容量可能背的起来1A的堵转电流。一般是山不转水转,如果背不动电机就转而使那些对电压变化敏感、但电流不大的其它部分的电压不要受到堵转期间电压下降的影响,而放任电机部分的电压下降一段时间。

Q7:请问两组dc to dc Converter各应用于正及负电压输出(同一输入电源)要如何应用?

A7:如果选择两个分离的芯片实现这两个电源,则正电源的可选范围大得多、基本上可认为是很常规的。空间不是很大的情况下,如果不能同步两个电源、则这两个电源从前一级吸入电流总量的起伏与这两个电源的频率之间的差频有关,可以看到明显的“差拍”起伏。这种差拍如果落在百到数十千周的范围内,则难以由前级电源和储能电容消化。这两个电源中至少一个应该是可同步的,需要跟踪另外一个电源的频率。两个电源还应该做到错相配置,使他们不会在同一个时间从电源吸取电流、以减少对源端滤波的要求。这牵涉到另外一个要求:从系统上电顺序和安全的角度出发,那个电源更需要保证持续(主从性)?

的确,Fly-back架构在变压器方式中是比较简洁的。但是不是采用Fly-back架构还与其它条件有关。上次少问了一个问题:那个28V是稳定的吗?看起来这两个电源像是一个系统中的下级子电源,有可能该28V是可以保证的。如果该28V是可以保证的,则最简单的方式是自制一个变压器驱动器、利用变压器产生略大于+/-15V的非稳压DC,然后利用线性稳压器产生稳定的+/-15V。对于15V的输出来讲,2-3V的压降对效率的影响不大。

可以肯定,正电源用一般的Buck结构不会有问题。但对于负电源来讲,从+28到-15V的电压变化幅度很大、电流也不小,实际设计的难度不低。一般可见1A的基于电感的Inverter具体实践。我建议在负电源侧考虑Fly-back结构。

还有一个问题:你肯定制变压器吗?

待明确正负电源的主从性和28V的条件后,我们再来讨论可以有哪些选择。

MAX1654是一个不错的选择,只用单个控制器和一对开关管就可以实现两路受控制的输出。其不足是并不是错相的,同时全部能量首先需要注入到+15V点输出电容,让后将一部分再转移给-15V输出。这样对输入和+15V的储能、滤波要求会高一些。但由于只使用了一对开关管,又是同步整流结构,整体的效率和成本在这个功率上还是有竞争力的。还有一点就是需要调整反馈和过流保护部分的采样电路,以使其适应+/-15V的输出(Datasheet上提供的电路是6V的)。

Q8:USB充电时,USB的中间两个管脚的接法

单节锂离子电池升压到5.3V后,使用的的升压芯片是SP1308,但是在给其他带设备供电时,保护电路里的mos管发热过大。USB的中间两脚我是让它们处于悬空状态。在进行USB接口的充放电时,中间的信号脚如何接呢?

A8:看起来你说的是好几个问题;第一个问题是不是讲,当利用锂2电池通过升压芯片SP1308对外提供5.3V电源时、保护电路里的MOS管发热严重?我相信你一定是讲超乎寻常地发热;如果只是正常由于电流过大发热,大概你就不会当个问题提出来了。我没有找到SP1308的Datasheet,也不好判断是不是其转换效率有问题。另一个需要提醒你注意的是不要让瞬态大电流脉冲流过电池,这除了引起异常发热外、对电池寿命也极其不利。

第二个问题比较复杂,与你做了个什么东西关系很大。有关的标准有YD T1591-2006,USB Charger 2.0, USB 2.0, OMTP, USB OTG等,都可以从网站上查到。如果你要做的是USB的手机充电器,短接那两条线就是了(似乎不像你说的产品)。

Q9:镍氢电池的放电终止控制。

我们现在有

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top