实现无荧光粉的单芯片白光发光二极管
时间:09-05
来源:互联网
点击:
发光二极管在固态照明工程中占有重要的地位,在未来5-10年将逐步取代传统的照明灯具,成为节能、环保的新型光源。与传统的光源(白炽灯,日光灯,卤素灯等)相比,发光二极管光源具有许多优点,如长寿命,体积小,低功耗,低环境污染,高电光转换效率,适用性好和使用安全等。随着GaN基III- V族化合物技术的发展和蓝光LED的实现,人们已经可以获得实现白光的三基色发光二极管。通常情况下,获得白光发光二极管的方法有:1)蓝光发光二极管+ 黄色荧光粉;2)多芯片组合,即将红,绿,蓝三个管芯结合在一起;3)光子循环实现白光发光方式;4)同一衬底上生长不同发光波长量子阱方式。但是上述几种获得白光的方式技术复杂、制作成本高、存在很多需要克服的困难,因此人们一直致力于实现能够避开这些问题的单芯片白光发光器件,并从理论上预言这种器件的可行性。然而,尽管GaN基的蓝、绿光发光二极管的技术日益成熟和商品化,实现单芯片白光发光成为科学家的梦想。2006年,来自台湾地区的物理所陈弘研究组采用InGaN的应力调制层,实现了对InGaN/GaN多量子阱的应力调制和控制,成功研制出单芯片白光发光器件。此方法不需要荧光粉,也不需要增加复杂的控制电路,制备过程与普通发光二极管相似。在常规的注入电流下(20mA-60mA),白光的显色指数几乎不变。图一展示了不同注入电流下发光颜色的变化。
图二、发光二极管InGaN/GaN 有源区透射电子显微镜截面图片
电致荧光谱研究表明在低电流下LED发射黄光。随着电流增加大于20mA,蓝光强度逐渐增加,出射光也逐渐由偏黄光过渡到白光。透射电子显微镜截面图显示在InGaN 量子阱中形成了大量的富In量子点。在低注入电流的时候,载流子先被富In量子点俘获发出黄光,随着电流增加,量子点之外的量子阱区域开始俘获载流子,辐射复合之后发射出蓝光,蓝光与黄光混合产生白光。
- 一种高亮度白光LED调光电路设计[图](12-09)
- 浅析对白光LED驱动器的要求(06-05)
- 采用压电振荡器的白光LED供能方法(09-03)
- PWM调节电路介绍及白光LED模组的驱动控制电路设计(08-01)
- 一种新型白光LED模组驱动电路的设计(07-22)
- AD5203设计的8串白光LED驱动方案(06-22)