设计面向高级数据系统的高效、高功率 DC/DC 电源架构
图 3 比较了三级解决方案与采用 LTM4611 的两级解决方案在一个很宽的输出电流范围内 (假设每个电压轨上的输出电流相同) 的效率及总功率损耗。由于砖型模块的最大额定功率为 75W,因此对于 3.3V 和 1.8V 电压轨,三级解决方案可提供的最大输出电流被限制为 13A,而两级解决方案则可各支持高达 14A 的输出电流。如图中的曲线所示,这两种解决方案在回升至 48V 分配电压过程中的总功率损耗差异会相当大,并有可能因此进一步推高成本——源于 PCB 中铜箔面积的增大、实际系统尺寸的增加、散热器的使用、甚至包括为了保持可靠的系统运作而必需提供的强制冷却气流。
图 3:三级与两级转换的效率和功率损耗比较 (从 48VDC 至 3.3VDC 和 1.8VDC)
对于越来越多的产品而言,相比于降低重负载时的功率损耗,减少轻负载时的功率损耗具有同等的重要性 —— 假如不说更重要的话。子系统被设计成尽可能长地工作于较低功耗的待机或睡眠状态 (旨在节能),并只在需要时候吸取峰值功率 (满负载)。LTM4611 支持脉冲跳跃模式和突发模式 (Burst Mode®) 操作,与连续导通模式相比,其在低于3A负载电流条件下的效率水平有了大幅度的提升。
多个电源的均流以提供 60A 或更大的输出电流
对于需要提供高达60A输出的电源轨,可支持多达 4 个 LTM4611 µModule 稳压器的均流。电流模式控制使得模块的均流特别可靠且易于实现,同时在启动、瞬变及稳态操作情况下甚至可以确保模块之间的均流。
相比之下,许多电压模式模块则是通过采用主-从配置或“压降均分 (droop-sharing)”(也被称为“负载线路均分”) 来实现均流。在启动和瞬态负载条件下,主-从模式容易遭受过流跳变,而压降均分则会导致负载调节指标下降,且在瞬态负载阶跃期间几乎无法保证优良的模块至模块电流匹配。LTM4611 通常可在无负载至满负载范围内提供优于 0.2% 的负载调节 —— 在 -40ºC 至 125ºC 的整个内部模块温度范围内则可达 0.5% (最大值)。
负载上的准确稳压
高电流低电压 FPGA、ASIC、微处理器 (μP) 等常常需要在封装端子 (例如:VDD 和 DGND 引脚) 上提供经过精确调节的极其准确的电压 —— 标称 VOUT 的 ±3% (或更好)。在如此高的电流水平和低电压电平下,PCB 走线中的阻性分配损耗有可能对负载上的电压产生影响。为了满足针对低输出电压的这一严格的稳压要求,LTM4611 提供了一个单位增益差分放大器,用于在电压低于或等于 3.7V 的情况下在负载端子上进行远端采样。由图 1 可见,POL 两端的差分反馈信号 (VOSNS+ – VOSNS−) 在 DIFF_VOUT 上被重构 (相对于模块的局部地 SGND),从而使得控制环路能够对模块的输出引脚与 POL 器件之间的功率输送通路中的任何压降进行补偿。
当 LTM4611 的输出电压处于标称 VOUT 的 ±5% 之内时,一个内部输出电压电源良好 (PGOOD) 指示器引脚将提供一个逻辑高电平漏极开路信号;否则,PGOOD 引脚将被拉至逻辑低电平。当输出电压超过了标称值的 107.5% 时,将触发输出过压保护功能电路并接通内部低端 MOSFET,直到这种输出电压过高的状况被清除为止。折返电流限制可在输出短路的情况下保护上游电源和器件本身。
耐热性能增强型封装
该器件的 LGA 封装允许从顶部和底部散失热量,因而便于使用金属底盘或 BGA 散热器。不管有没有冷却气流,这种封装的外形均有利于实现卓越的热耗散。图 4 示出了 LTM4611 顶面的 IR 热成像图,由图可见:当执行 1.8V 输入至 1.5V/15A 输出转换且无冷却气流时,在实验台上测得的功率损耗仅为 3.2W。
如前文所述,在 1.8V 的低输入电压条件下,为了以足够的幅度驱动栅极以使功率 MOSFET 完全饱和,不具备偏置电源的传统型电源 IC 解决方案将会十分吃力。因此,其热性能将低于 LTM4611 所能提供的水平 (如图 4 所示),这是由于后者具有内部微功率偏置发生器。
图 4:LTM4611 稳压器从一个 1.8V 输入产生 1.5V/15A 输出时的顶部热成像图。
功率损耗为 3.2W。无冷却气流情况下的实验台测试产生了一个 65ºC 的表面温度热点。
缩减占板面积
LTM4611 内置于一种耐热性能增强型 LGA (焊盘网格阵列) 封装,具有小巧的焊盘图形 (仅 15mm x 15mm) 和实际体积 (高度仅为 4.32mm —— 占用的空间只有区区 1cm3),可提供引人注目的效率。除了高效率之外,在给定的输入电压条件下,LTM4611 的功耗曲线相对平坦,从而使 LTM4611 的热设计以及在后续产品中的重复使用变得简单易行 —— 即使在中间总线电压由于 IC 芯片不断缩小而日益下降的情况之下也不例外。
Linear 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 驱动HB LED的分立元件降压变换器(08-04)
- 几种实用的低电压冗余电源方案设计(01-26)
- 轻松从PoE过渡至PoE+的设计方案(12-09)
- 新型的笔记本电脑电源管理技术(07-22)