便携式无线设备的电源架构向“绿色”迈进
曲线是从3.2V直至 1.8V,不过,用“新”的圆柱形锂AA和AAA电池,这个范围已经向上移动了约0.4V,因此需要一个降压-升压型稳压器以更高效率在整个电池放电范围内调节3.0V或3.3V。此外,常常需要第二个降压通道来为标称值为1.8V的存储器供电。
由电池供电的无线便携式设备也需要绿色电源
过去一年中“绿色环保”概念大量出现在新闻中,2009年我们将会看到更多这方面的报道。结果,很多供应商或电源管理和转换IC在跨宽负载范围提高电源转换效率方面取得了很大进步。
此外,人们普遍认为,不管产品是靠插到墙上的电源插座还是靠电池供电工作,都需要节能。这是因为,随着一个国家人口的增加,对能量的需求也在增加,人们需要能量为家居的加热/冷却系统、照明和家用电器供电。不仅建造新的发电设施耗费大量资金,而且电能产生后传送到用户处也需要大量的金钱。据观察,将大多数家用电器目前的能耗降低15%~20%,比建设新的发电设施更具成本效益。
就由电池供电的便携式无线产品而言,类似的概念也适用,不过,在使用多节AA或AAA型电池的情况下,对这些含有害化学材料的电池处置给我们的环境造成了负面影响。显然,为延长这些电池在最终产品中的使用寿命所能做的任何事情都将最大限度减小更换电池的频度,因此可以减少需要回收的有害污染物。
与建造新的发电设施或有害化学材料回收设施有关的高成本导致的结果是,很多国家已经采取了“绿色政策”,这些国家以此鼓励制造商在最终产品中采用节能技术。因此,就一个用在任何类型节能设备中的电源管理和转换IC而言,任何内部使用的DC/DC转换器都必须有两个主要的特性。首先,它们必须在宽负载电流范围内拥有非常高的转换效率。其次,它们在备用和停机模式时必须有非常低的静态电流。结果,很多由电池供电的便携式产品正在纳入具有这两个关键特性的电源管理和转换产品。
新的绿色电源转换产品
LTC3101是一个多功能、紧凑型电源管理解决方案系列中最新的PMIC,该系列解决方案用于电池供电和电池备份应用。它集成了一个低损耗电源通路(PowerPath)控制器、3个高效率同步开关稳压器(1个降压-升压和两个降压)、1个电流限制为200mA的VMAX输出(跟踪电压较高的输入电源)、1个受保护的100mA热插拔(Hot Swap)输出、按钮开/关控制、一个可编程处理器复位发生器和一个始终保持接通的LDO,所有这些都在一个紧凑型、扁平4mm×4mm QFN-24封装中。
LTC3101具有1.8~5.5V的宽输入工作电压范围,与2或3节采用镍、锂或碱性化学材料的AA或AAA型电池、标准单节锂离子/聚合物棱柱形电池以及USB或5V交流适配器输入电源兼容(见图3)。此外,该器件的低损耗电源通路控制无缝和自动地管理上述多个输入电源之间的电源通路。“保持运作”的VMAX和LDO输出为关键功能或附加的外部稳压器供电。内部排序和独立的使能引脚提供了灵活的加电选项。
图2 LTC3101的效率曲线
图3 LTC3101原理图
LTC3101的降压-升压型稳压器在输入电压高于3V时可以连续提供高达800mA的电流,非常适用于在1.8~ 5.5V的整个输入电压范围内高效率地调节3.0V或3.3V输出。LTC3101的两个降压型稳压器以100%占空比工作,每个都能提供350mA的输出电流,具有低至0.6V的可调输出电压。LTC3101的内部低RDS(ON) 开关实现了高达95%的降压-升压效率和高达 93%的降压型稳压器效率,从而最大限度地延长电池运行时间(见图 2)。
诸如手持式仪表和医疗诊断设备等便携式无线仪表,由于需要执行大量数据处理任务而由3或4节AA电池供电的情形并非罕见。同步降压-升压型转换器LTC3534就是为此而设计的,该器件具有2.4~7V的扩展输入电压范围,可向固定稳压输出提供高达500mA的输出电流。它的输入可以高于、等于或低于输出。LTC3534采用的拓扑在所有工作模式时都提供连续输送模式,从而使其非常适用于3或4节碱性电池应用。
例如,考虑一个输入电压范围为 3.6~6.4V以提供一个固定5V输出的4节碱性(AA或AAA)电池应用(见图4)。在很多情况下,当与更加传统的SEPIC方法比较时,运用LTC3534可以使电池运行时间延长25%。LTC3534的1MHz恒定开关频率在最大限度地减小外部组件尺寸的同时提供低输出噪声。纤巧外部组件结合3mm×5mm DFN(或SSOP-16)封装提供了一个纤巧的解决方案占板面积,非常适用于很多手持式设备。
图4 LTC3534 原理图
LTC3534含有两个N沟道以及两个P沟道MOSFET(分别为215mΩ/275Ωm和260mΩ),提供高达94%的效率。突发模式工作仅需要25μA的静态电流,而停机电流低于1μA,以进一步延长电池运行时间。如果应用是噪声敏感的,那么
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)