微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 适用于各种类型硬开关功率转换器的电能回收电路

适用于各种类型硬开关功率转换器的电能回收电路

时间:09-21 来源:互联网 点击:



图4:新型能量恢复电路:BC2

2.1.概念描述

当晶体管导通时,线圈NS1 在主升压线圈内恢复升压二极管DB的反向恢复电流IRM 。因为交流输入电压调制LB 电压,所以它也调制NS1上的反射电压。此外,这个输入电压还调制升压二极管电流IDB及其相关的反向恢复电流IRM。这些综合调制过程让流经小线圈L的额外的反向恢复电流 IRM 在线圈NS1 内重置,即便在最恶劣的情况下也是如此。当晶体管关断时,辅助线圈NS2把小线圈L的额外电流注入到输出电容。线圈NS2 上的反射电压与输入电压是一种函数关系,当交流线处于低压时,反射电压达到最大值,与小线圈L的最大电流值对应。这些综合变化使流经小线圈L的电流通过二极管D2 消失在体电容内,即便在最恶劣的情况下也是如此。当dI/dt 斜率(大约10A/μs)较低时,例如,在开关转换器的断续模式下,这两个附加线圈NS1和NS2 用于关断二极管D1 和D2; 二极管的反向恢复电流不会影响电路特性。我们可以说,这个概念“在电路内回收电流”,因此称之为BC2。

2.2.相位时序描述

变压比m1 和m2 是线圈NS1和NS2 分别与NP的比值。

相位 [ t0前]

在t0前,BC2电路的特性与传统升压转换器的特性相同。升压二极管DB 导通,通过体电容器发射主线圈能量。

相位 [t0, t1]

在t0时,功率MOSFET导通,DB 的电流等于I0。在t0+时,电流软开关启动,即在零电流时,功率MOSFET的电压降至0V,无开关损耗。在t0后,流经小线圈L的电流线性升高,达到输入电流I0和二极管反向恢复电流IRM的总合为止,而流经DB 的电流线性降至-IRM

图5真实地描述了这些电流的变化,并考虑到了m2 变压比。下面是晶体管TR和升压二极管DB的dI/dt简化表达式 :

,

此外,在t0 +时,功率MOSFET的固有电容COSS 被放电,电阻是晶体管的导通电阻RDS(on)。与功率校正电路不同,晶体管漏极上的电压较低,因为VNS2反射电压是从VOUT抽取的,这个特性让BC2 电路具有一个优点,在低输出负荷时,可以节省电能,利用下面的公式可以算出节省的电能:



因此,BC2 还降低了关断损耗。

相位[t1, t2]

在t1+时,升压二极管DB 关断,过流IRM被贮存小线圈内,过流使DB 结电容线性放电。同时,主线圈上的电压极性发生变化,直到D1 二极管导通为止。与此同时,过流IRM 被变压比m1降低,然后被发射到主线圈内。

图5:每相的等效时序

图6:每相的等效电路

因此,流经NS1的电流有助于给内部线圈LB放电,同时交流电源电压给线圈Np 施加偏压。因为根据下面公式计算的反射电压VNS1的原因,流经D1 的电流IRM 降至0 A。

;

为保证断续模式下的软开关操作,流经D1的电流在t3前达到0 A。因为当正弦周期内的Vmains电压达到最高值时,IRM电流达到最高值,所以tD1_ON 时间趋势支持功率因数校正应用/此外,为消除二极管D1 的反向恢复电流效应,因为反射电压VNS1低的原因,必须使dI/dt_D1 总是保持低斜率,通过下面公式计算dI/dt_D1:



不幸地是,在这个相位期间,升压二极管DB被施加一个高反向电压:

这个特性要求这种应用增加一个二极管,为此,意法半导体开发出一个优化的二极管,使IRM 电流值与击穿电压达到精确平衡。

相位[t2, t3]

在t2时,D1二极管的电流达到0 A,BC2变成一个传统的功率升压转换器。当功率晶体管保持通态时,在t3点,主LB 线圈内和小L线圈内的电流上升到I1

相位 [t3, t4]

在t3时,功率晶体管关断。这时,COSS电容电压被小线圈L内贮存的电流线性充电,直到二极管D2导通为止;在关断期间,功率开关上没有过压应力。

同时,主线圈上的电压极性发生变化,直到DB 二极管导通为止。一旦所有的二极管一起导通,输出电流按图5所示的方式配流。因为NS2的反射电压的原因,D2 的电流从I1开始降至0 A,dI/dt斜率较低。相反,在t4时,DB 的电流升到标称值。

这种配流有利于BC2电路。事实上,在交流电压较低的功率因数校正应用(例如90VRMS)中,最高增强电流是在二极管DB 和D1之间机械分配。因此,整流阶段的导通损耗得到改进。下面是反射电压VNS2 和D2 导通时间的计算公式:

;

tD2_ON时间趋势支持功率因数校正应用,因为Vmains 电压最低时,I1 电流最大。因此,即变在恶劣的条件下,例如,最低Vmains电压下的高输出负载电流,BC2电路仍然能够保证断续模式。此外,为消除二极管D2 的反向恢复电流效应,因为反射电压VNS2低的原因,必须使dI/dt_D2 总是保持低斜率,通过下面公式计算dI/dt_D2:



相位 [t4, t5]

在t4时,D2二极管的电流达到0 A,BC2变成一个传统的功率升压转换器,只有升压二极管DB 导通。因为NS2上的反射电压的原因,功率开关管的电压低于 Vout。因此,COSS电容在体电容内放电。在t0时,晶体管导通,节能电能。

2.3.BC2电路上的电压应力

表1列出了每个相位对应的最大电压。

表1:BC2上的最大反向电压

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top